Citation: | WANG Li, LIANG Boqiang, LIU Jin. Global Attractivity of Pseudo Almost Periodic Solutions to a Class of Lasota-Wazewska Models[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1091-1098. doi: 10.21656/1000-0887.380256 |
[1] |
WAZEWSKA-CZYZEWSKA M, LASOTA A. Mathematical problems of the dynamics of a system of red blood cells[J]. Mat Stos,1976,17(6): 23-40.
|
[2] |
景冰清, 王丽丽. Lasota-Wazewska模型的唯一周期正解的存在性[J]. 太原科技大学学报, 2008,29(3): 217-219.(JING Bingqing, WANG Lili. Existence of unique positive periodic solution for a Lasota-Wazewska model[J]. Journal of Taiyuan University of Science and Technology,2008,29(3): 217-219.(in Chinese))
|
[3] |
CHEN L, CHEN F. Positive periodic solution of the discrete Lasota-Wazewska model with impulse[J]. Journal of Difference Equations and Applications,2014,20(3): 406-412.
|
[4] |
马苏奇, 陆启韶. 具有非线性出生率的时滞Lasota-Wazewska模型的稳定性分岔[J]. 南京师范大学学报(自然科学版), 2005,28(2): 1-5.(MA Suqi, LU Qishao. Stability bifurcations of Lasota-Wazewska-type model with maturation delay and nonlinear birth rate[J]. Journal of Nanjing Normal University (Natural Science),2005,28(2): 1-5.(in Chinese))
|
[5] |
王爱丽. 具有连续时滞的Lasota-Wazewska模型的Hopf-分支[J]. 江西师范大学学报(自然科学版), 2008,32(3): 330-334.(WANG Aili. The Hopf-bifurcation in a Lasota-Wazewska-type model with continuous delays[J]. Journal of Jiangxi Normal University (Natural Science),2008,32(3): 330-334.(in Chinese))
|
[6] |
WANG L, YU M, NIU P. Periodic solution and almost periodic solution of impulsive Lasota-Wazewska model with multiple time-varying delays[J]. Computers and Mathematics With Applications,2012,64(8): 2383-2394.
|
[7] |
柏琼, 冯春华. 具非线性脉冲时滞的Lasota-Wazewska模型概周期解的存在性与稳定性[J]. 广西科学, 2011,18(4): 329-332.(BAI Qiong, FENG Chunhua. Existence and stability of almost periodic solutions for nonlinear impulsive Lasota-Wazewska model[J]. Guangxi Sciences,2011,18(4): 329-332.(in Chinese))
|
[8] |
STAMOV G T. On the existence of almost periodic solutions for the impulsive Lasota-Wazewska model[J]. Applied Mathematics Letters,2009,22(4): 516-520.
|
[9] |
陈晓英, 施春玲. 一类具有无穷时滞的Lasota-Wazewska模型的概周期解[J]. 福州大学学报(自然科学版), 2014,42(1): 8-11.(CHEN Xiaoying, SHI Chunling. Almost periodic solution for a Lasota-Wazewska model with infinte delay[J]. Journal of Fuzhou University (Natural Science Edition),2014,42(1): 8-11.(in Chinese))
|
[10] |
龙志文. 几类时滞生物数学模型的全局动力学分析[D]. 博士学位论文. 长沙: 湖南大学, 2016.(LONG Zhiwen. Global dynamics analysis of several biological models with time delays[D]. PhD Thesis. Changsha: Hunan University, 2016.(in Chinese))
|
[11] |
RIHANI S, KESSAB A, CHERIF F. Pseudo almost periodic solutions for a Lasota-Wazewska model[J]. Electronic Journal of Differential Equations,2016,2016(62): 1-17.
|
[12] |
廖书, 杨炜明. 考虑媒体播报效应的双时滞传染病模型[J]. 应用数学和力学, 2017,38(12): 1412-1424.(LIAO Shu, YANG Weiming. An epidemic model with dual delays in view of media coverage[J]. Applied Mathematics and Mechanics,2017,38(12): 1412-1424.(in Chinese))
|
[13] |
彭剑, 李禄欣, 胡霞, 等. 时滞影响下受控斜拉索的参数振动稳定性[J]. 应用数学和力学, 2017,38(2): 181-188.(PENG Jian, LI Luxin, HU Xia, et al. Parametric vibration stability of controlled stay cables with time delays[J]. Applied Mathematics and Mechanics,2017,38(2): 181-188.(in Chinese))
|
[14] |
ZHANG Chuanyi. Almost Periodic Type Functions and Ergodicity[M]. Beijing: Science Press, 2003.
|
[15] |
SAMOILENKO A M, PERESTYUK N A. Impulsive Differential Equations[M]. Singapore: World Scientific, 1995.
|