WANG Li, LIANG Boqiang, LIU Jin. Global Attractivity of Pseudo Almost Periodic Solutions to a Class of Lasota-Wazewska Models[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1091-1098. doi: 10.21656/1000-0887.380256
Citation: WANG Li, LIANG Boqiang, LIU Jin. Global Attractivity of Pseudo Almost Periodic Solutions to a Class of Lasota-Wazewska Models[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1091-1098. doi: 10.21656/1000-0887.380256

Global Attractivity of Pseudo Almost Periodic Solutions to a Class of Lasota-Wazewska Models

doi: 10.21656/1000-0887.380256
  • Received Date: 2017-09-14
  • Rev Recd Date: 2018-02-01
  • Publish Date: 2018-09-15
  • The Lasota-Wazewska model is often used to describe the regeneration of red blood cells in animals. Based on the Banach contraction mapping principle and through construction of the Lyapunov function, the existence, uniqueness and global attractivity of pseudo almost periodic solutions to a class of Lasota-Wazewska models were studied. The results have some advantages, and can enrich the characterization of the dynamic behavior of the Lasota-Wazewska model.
  • loading
  • [1]
    WAZEWSKA-CZYZEWSKA M, LASOTA A. Mathematical problems of the dynamics of a system of red blood cells[J]. Mat Stos,1976,17(6): 23-40.
    [2]
    景冰清, 王丽丽. Lasota-Wazewska模型的唯一周期正解的存在性[J]. 太原科技大学学报, 2008,29(3): 217-219.(JING Bingqing, WANG Lili. Existence of unique positive periodic solution for a Lasota-Wazewska model[J]. Journal of Taiyuan University of Science and Technology,2008,29(3): 217-219.(in Chinese))
    [3]
    CHEN L, CHEN F. Positive periodic solution of the discrete Lasota-Wazewska model with impulse[J]. Journal of Difference Equations and Applications,2014,20(3): 406-412.
    [4]
    马苏奇, 陆启韶. 具有非线性出生率的时滞Lasota-Wazewska模型的稳定性分岔[J]. 南京师范大学学报(自然科学版), 2005,28(2): 1-5.(MA Suqi, LU Qishao. Stability bifurcations of Lasota-Wazewska-type model with maturation delay and nonlinear birth rate[J]. Journal of Nanjing Normal University (Natural Science),2005,28(2): 1-5.(in Chinese))
    [5]
    王爱丽. 具有连续时滞的Lasota-Wazewska模型的Hopf-分支[J]. 江西师范大学学报(自然科学版), 2008,32(3): 330-334.(WANG Aili. The Hopf-bifurcation in a Lasota-Wazewska-type model with continuous delays[J]. Journal of Jiangxi Normal University (Natural Science),2008,32(3): 330-334.(in Chinese))
    [6]
    WANG L, YU M, NIU P. Periodic solution and almost periodic solution of impulsive Lasota-Wazewska model with multiple time-varying delays[J]. Computers and Mathematics With Applications,2012,64(8): 2383-2394.
    [7]
    柏琼, 冯春华. 具非线性脉冲时滞的Lasota-Wazewska模型概周期解的存在性与稳定性[J]. 广西科学, 2011,18(4): 329-332.(BAI Qiong, FENG Chunhua. Existence and stability of almost periodic solutions for nonlinear impulsive Lasota-Wazewska model[J]. Guangxi Sciences,2011,18(4): 329-332.(in Chinese))
    [8]
    STAMOV G T. On the existence of almost periodic solutions for the impulsive Lasota-Wazewska model[J]. Applied Mathematics Letters,2009,22(4): 516-520.
    [9]
    陈晓英, 施春玲. 一类具有无穷时滞的Lasota-Wazewska模型的概周期解[J]. 福州大学学报(自然科学版), 2014,42(1): 8-11.(CHEN Xiaoying, SHI Chunling. Almost periodic solution for a Lasota-Wazewska model with infinte delay[J]. Journal of Fuzhou University (Natural Science Edition),2014,42(1): 8-11.(in Chinese))
    [10]
    龙志文. 几类时滞生物数学模型的全局动力学分析[D]. 博士学位论文. 长沙: 湖南大学, 2016.(LONG Zhiwen. Global dynamics analysis of several biological models with time delays[D]. PhD Thesis. Changsha: Hunan University, 2016.(in Chinese))
    [11]
    RIHANI S, KESSAB A, CHERIF F. Pseudo almost periodic solutions for a Lasota-Wazewska model[J]. Electronic Journal of Differential Equations,2016,2016(62): 1-17.
    [12]
    廖书, 杨炜明. 考虑媒体播报效应的双时滞传染病模型[J]. 应用数学和力学, 2017,38(12): 1412-1424.(LIAO Shu, YANG Weiming. An epidemic model with dual delays in view of media coverage[J]. Applied Mathematics and Mechanics,2017,38(12): 1412-1424.(in Chinese))
    [13]
    彭剑, 李禄欣, 胡霞, 等. 时滞影响下受控斜拉索的参数振动稳定性[J]. 应用数学和力学, 2017,38(2): 181-188.(PENG Jian, LI Luxin, HU Xia, et al. Parametric vibration stability of controlled stay cables with time delays[J]. Applied Mathematics and Mechanics,2017,38(2): 181-188.(in Chinese))
    [14]
    ZHANG Chuanyi. Almost Periodic Type Functions and Ergodicity[M]. Beijing: Science Press, 2003.
    [15]
    SAMOILENKO A M, PERESTYUK N A. Impulsive Differential Equations[M]. Singapore: World Scientific, 1995.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1187) PDF downloads(413) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return