Citation: | ZHANG Haijun, FENG Jianhu, CHENG Xiaohan, LI Xue. An Entropy Stable Scheme for Shallow Water Equations With Source Terms[J]. Applied Mathematics and Mechanics, 2018, 39(8): 935-945. doi: 10.21656/1000-0887.380195 |
[1] |
FJORDHOLM U S, MISHRA S, TADMOR E. Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography[J]. Journal of Computational Physics,2011,230(14): 5587-5609.
|
[2] |
LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics,1954,7(1): 159-193.
|
[3] |
LAX P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves[C]// SIAM Regional Conference Lectures in Applied Mathematics. Vol11. Philadelphia, USA, 1973.
|
[4] |
TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws. I[J]. Mathematics of Computation,1987,49(179): 91-103.
|
[5] |
ROE P L. Entropy conservation schemes forthe Euler equations[R]. Talk at HYP 2006, Lyon, France, 2006.
|
[6] |
ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions Ⅱ: entropy production at shocks[J].Journal of Computational Physics,2009,228(15): 5410-5436.
|
[7] |
MOHAMMED A N, ISMAIL F. Study of an entropy-consistent Navier-Stokes flux[J]. International Journal of Computational Fluid Dynamics,2013,27(1): 1-14.
|
[8] |
LIU Y, FENG J, REN J. High resolution, entropy-consistent scheme using flux limiter for hyperbolic systems of conservation laws[J]. Journal of Scientific Computing,2015,64(3): 914-937.
|
[9] |
任炯, 封建湖, 刘友琼, 等. 求解双曲守恒律方程的高分辨率熵相容格式[J]. 计算物理, 2014,31(5): 539-551.(REN Jiong, FENG Jianhu, LIU Youqiong, et al. High resolution entropy consistent schemes for hyperbolic conservation laws[J]. Chinese Journal of Computational Physics,2014,31(5): 539-551.(in Chinese))
|
[10] |
刘友琼, 封建湖, 梁楠, 等. 求解浅水波方程的熵相容格式[J]. 应用数学和力学, 2013,34(12): 1247-1257.(LIU Youqiong, FENG Jianhu, LIANG Nan, et al. An entropy-consistent flux scheme for shallow water equations[J]. Applied Mathematics and Mechanics,2013,34(12): 1247-1257.(in Chinese))
|
[11] |
刘友琼, 封建湖, 任炯, 等. 求解多维Euler方程的二阶旋转混合型格式[J]. 应用数学和力学, 2014,35(5): 542-553.(LIU Youqiong, FENG Jianhu, REN Jiong, et al. A second-order rotated-hybrid scheme for solving multi-dimensional compressible Euler equations[J]. Applied Mathematics and Mechanics,2014,35(5): 542-553.(in Chinese))
|
[12] |
程晓晗, 聂玉峰, 蔡力. 基于WENO重构的熵稳定格式求解浅水方程[J]. 计算物理, 2015,32(5): 523-528.(CHENG Xiaohan, NIE Yufeng, CAI Li. WENO based entropy stable scheme for shallow water equations[J]. Chinese Journal of Computational Physics,2015,32(5): 523-528.(in Chinese))
|
[13] |
程晓晗, 封建湖, 聂玉峰. 求解双曲守恒律方程的WENO型熵相容格式[J]. 爆炸与冲击, 2014,34(4): 501-507.(CHENG Xiaohan, FENG Jianhu, NIE Yufeng. WENO type entropy consistent scheme for hyperbolic conservation laws[J]. Explosion and Shock Waves,2014,34(4): 501-507.(in Chinese))
|
[14] |
郑素佩, 封建湖, 刘彩侠. 高分辨率熵相容算法在二维溃坝问题中的应用[J]. 水动力学研究与进展, 2013,28(5): 545-551.(ZHENG Supei, FENG Jianhu, LIU Caixia. High-resolution entropy consistent algorithm for the two-dimensional dam-break flows[J]. Chinese Journal of Hydrodynamics,2013,28(5): 545-551.(in Chinese))
|
[15] |
GOTTLIEB S, SHU C W. A survey of strong stability preserving high order time discretizations[J]. SIAM Review,2001,43(1): 89-112.
|
[16] |
FJORHOLM U S. Structure preserving finite volume methods for the shallow water equations[D]. Master Thesis. Norway: University of Oslo, 2009.
|