Citation: | LIANG Xiqiang, GAO Qiang, YAO Weian. An Efficient Algorithm Based on Dynamic System Properties and Group Theory for Transient Responses of 1D Periodic Structures[J]. Applied Mathematics and Mechanics, 2018, 39(2): 170-182. doi: 10.21656/1000-0887.380129 |
[1] |
汪越胜, 张传增, 陈阿丽, 等. 声子晶体能带结构计算数值方法评述[C]//中国力学大会. 中国, 陕西, 西安, 2013.(WANG Yuesheng, ZHANG Chuanzeng, CHEN Ali, et al. The recitation of numerical methods of the phononic crystal band structure[C]// Proceedings of the Chinese Congress of Theoretical and Applied Mechanics . Xi’an, Shaanxi, China, 2013.(in Chinese))
|
[2] |
温激鸿, 郁殿龙, 王刚, 等. 周期结构细直梁弯曲振动中的振动带隙[J]. 机械工程学报, 2005,41(4): 1-6.(WEN Jihong, YU Dianlong, WANG Gang, et al. Elastic wave band gaps in flexural vibrations of straight beams[J]. Chinese Journal of Mechanical Engineering,2005,41(4): 1-6.(in Chinese))
|
[3] |
郑玲, 李以农. 基于多重散射理论的二维声子晶体带结构计算[J]. 重庆大学学报(自然科学版), 2007,30(6): 6-9.(ZHENG Ling, LI Yinong. Elastic band gaps in two-dimensional phononic crystals based on multiple scattering theory[J]. Journal of Chongqing University (Natural Science Edition),2007,30(6): 6-9.(in Chinese))
|
[4] |
陈启勇, 胡少伟, 张子明. 基于声子晶体理论的弹性地基梁的振动特性研究[J]. 应用数学和力学, 2014,35(1): 29-38.(CHEN Qiyong, HU Shaowei, ZHANG Ziming. Research on the vibration property of the beam on elastic foundation based on the PCs theory[J]. Applied Mathematics and Mechanics,2014,35(1): 29-38.(in Chinese))
|
[5] |
AXMANN W, KUCHMENT P. An efficient finite element method for computing spectra of photonic and acoustic band-gap materials—I: scalar case[J]. Journal of Computational Physics,1999,150(2): 468-481.
|
[6] |
郁殿龙, 刘耀宗, 王刚, 等. 一维杆状结构声子晶体扭转振动带隙研究[J]. 振动与冲击, 2006,25(1): 104-106, 169-170.(YU Dianlong, LIU Yaozong, WANG Gang, et al. Research on torsional vibration band gaps of one dimensional phononic crystals composed of rod structures[J]. Journal of Vibration and Shock,2006,25(1): 104-106, 169-170.(in Chinese))
|
[7] |
CAO Y J, HOU Z L, LIU Y Y. Finite difference time domain method for band-structure calculations of two-dimensional phononic crystals[J]. Solid State Communications,2004,132(8): 539-543.
|
[8] |
贠昊, 邓子辰, 朱志韦. 弹性波在星形节点周期结构蜂窝材料中的传播特性研究[J]. 应用数学和力学, 2015,36(8): 814-820.(YUN Hao, DENG Zichen, ZHU Zhiwei. Bandgap properties of periodic 4-point star-shaped honeycomb materials with negative Poisson’s ratios[J]. Applied Mathematics and Mechanics,2015,36(8): 814-820.(in Chinese))
|
[9] |
刘维宁, 张昀青. 轨道结构在移动荷载作用下的周期解析解[J]. 工程力学, 2004,21(5): 100-102, 93.(LIU Weining, ZHANG Yunqing. A periodic analytical solution of railway track structure under moving loads[J]. Engineering Mechanics,2004,21(5): 100-102, 93.(in Chinese))
|
[10] |
柴维斯, 刘锋. 周期加筋板动力响应的解析解[J]. 暨南大学学报(自然科学版), 2005,26(1): 46-49.(CHAI Weisi, LIU Feng. Exact solutions of vibration analysis for stiffened plates[J]. Journal of Jinan University (Natural Science),2005,〖STHZ〗 26(1): 46-49.(in Chinese))
|
[11] |
HANS S, BOUTIN C, CHESNAIS C. A typical dynamic behavior of periodic frame structures with local resonance[J]. Journal of the Acoustical Society of America,2014,136(4): 2077.
|
[12] |
RYCHLEWSKA J, SZYMCZYK J, WOZNIAK C. On the modelling of dynamic behavior of periodic lattice structures[J]. Acta Mechanica,2004,170(1/2): 57-67.
|
[13] |
MENCIK J M, DUHAMEL D. A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructures and large-sized finite element models[J]. Finite Elements in Analysis and Design,2015,101: 1-14.
|
[14] |
高强, 姚伟岸, 吴锋, 等. 周期结构动力响应的高效数值方法[J]. 力学学报, 2011,43(6): 1181-1185.(GAO Qiang, YAO Weian, WU Feng, et al. An efficient algorithm for dynamic responses of periodic structures[J]. Chinese of Journal of Theoretical and Applied Mechanics,2011,43(6): 1181-1185.(in Chinese))
|
[15] |
GAO Q, ZHANG H W, ZHONG W X, et al. An accurate and efficient method for dynamic analysis of two-dimensional periodic structures[J]. International Journal of Applied Mechanics,2016,8(2): 1650013.
|
[16] |
NEWMARK N M. A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics,1959,85(3): 67-94.
|
[17] |
BURRAGE K, BUTCHER J C. Stability-criteria for implicit Runge-Kutta methods[J]. SIAM Journal on Numerical Analysis,1979,16(1): 46-57.
|
[18] |
PARK K C, UNDERWOOD P G. A variable-step central difference method for structureal dynamics analysis—part 1: theoretical aspects[J]. Computer Methods in Applied Mechanics and Engineering,1980,22(2): 241-258.
|
[19] |
同济大学应用数学系. 高等数学[M]. 北京: 高等教育出版社, 2002.(Department of Applied Mathematics of Tongji University. Advanced Mathematics [M]. Beijing: Higher Education Press, 2002.(in Chinese))
|
[20] |
ZHONG W X, QIU C H. Analysis of symmetric or partially symmetric structures[J]. Computer Methods in Applied Mechanics and Engineering,1983,38(1): 1-18.
|