FENG Yihu, CHEN Huaijun, MO Jiaqi. Asymptotic Solution to a Class of Nonlinear Singular Perturbation Autonomous Differential Systems[J]. Applied Mathematics and Mechanics, 2018, 39(3): 355-363. doi: 10.21656/1000-0887.380110
Citation: FENG Yihu, CHEN Huaijun, MO Jiaqi. Asymptotic Solution to a Class of Nonlinear Singular Perturbation Autonomous Differential Systems[J]. Applied Mathematics and Mechanics, 2018, 39(3): 355-363. doi: 10.21656/1000-0887.380110

Asymptotic Solution to a Class of Nonlinear Singular Perturbation Autonomous Differential Systems

doi: 10.21656/1000-0887.380110
Funds:  The National Natural Science Foundation of China(11202106)
  • Received Date: 2017-04-25
  • Rev Recd Date: 2017-06-07
  • Publish Date: 2018-03-15
  • A class of generalized Lienard singular perturbation systems were considered. Firstly, the reduced solution to the system was obtained. Next, the outer solution was constructed by means of the singular perturbation method. Then, a stretch variable was introduced and the initial layer corrective term was found. Finally, the arbitrary-order asymptotic analytic expansion of the system solution was given and the uniform validity of the solution was proved. The proposed method with the basic theory has wide application values.
  • loading
  • [1]
    CALLOT J L, DIENER F, DIENER M. Le probleme deia “chase au canard”[J]. C R Acad Sci Paris, Ser 1,1978,286(22): 1059-1061.
    [2]
    ZVOKIN A K, SHUBI M A. Nonstandard analysis and singular perturbation of ordinary differential equations[J].Usp Mat Nauk,1984,39(2): 77-127.
    [3]
    ECKHAUS W. Relaxation Oscillations Including a Standard Chase on French Ducks [M]. Lect Notes in Math,Vol985. Berlin: Springer-Verlag, 1983: 449-494.
    [4]
    BENOIT E, LOBRY C. Les canards de R3[J]. C R Acad Sci Paris, Ser 1,1982,294(14): 483-488.
    [5]
    XU Yun, ZHANG Jianxia, ZU Xia, et al. Nonchaotic random behaviour in the second order autonomous system[J]. Chin Phys,2007,16(8): 2285-2290.
    [6]
    MISCHENKO E F, ROZOV N. Differential Equations With Small Parameters and Relaxation Oscillations [M]. Moscow: Academic Press, 1975.
    [7]
    LUTZ R, GOZE M. Nonstandard Analysis, a Practical Guide With Applications [M]. Lect Notes in Math,Vol881. Berlin : Springer-Verlag, 1981.
    [8]
    EI S I, MIMURA M, NAGAYAMA M. Interacting spots in reaction diffusion systems[J]. Discrete Contin Dyn Syst,2006,14(1): 31-62.
    [9]
    李翠萍. 奇异摄动与鸭解[J]. 北京航空航天大学学报, 1993,4(1): 84-89.(LI Cuiping. Singular perturbation and duck solutions[J]. Journal of Beijing University of Aeronautics and Astronautics, 1993,4(1): 84-89.(in Chinese))
    [10]
    LI Cuiping. Duck solutions: a new kind of bifurcation phenomenon in relaxation oscillations[J]. Acta Math Sinica (New Ser),1996,12(1): 89-104.
    [11]
    李翠萍. 奇异摄动中的鸭解问题[J]. 中国科学(A辑), 1999,29(12): 1084-1093.(LI Cuiping. The duck solution problems in singular perturbation[J]. Science in China(Series A), 1999,29(12): 1084-1093.(in Chinese))
    [12]
    XIE Feng, HAN Maoan, ZHANG Weijiang. The persistence of canards in 3-D singularly perturbed systems with two fast variables[J].Asymptotic Anal,2006,47(1/2): 95-106.
    [13]
    徐云, 张建峡, 徐霞, 等. Canard轨迹原理[J]. 物理学报, 2008,57(7): 4029-4033.(XU Yun, ZHANG Jianxia, XU Xia, et al. The principle of the phase track of Canard[J].Acta Phys Sin,2008,57(7): 4029-4033.(in Chinese))
    [14]
    欧阳成, 姚静荪, 温朝晖, 等. 一类广义鸭轨迹系统轨线的构造[J]. 物理学报, 2012,61(3): 030202.(OUYANG Cheng, YAO Jingsun, WEN Zhaohui, et al. Constructing path curve for a class of generalized phase tracks of canard system[J]. Acta Phys Sin, 2012,61(3): 030202.(in Chinese))
    [15]
    MO Jiaqi. A singularly perturbed nonlinear boundary value problem[J]. J Math Anal Appl,1993,178(1): 289-293.
    [16]
    MO Jiaqi. Singular perturbation for a class of nonlinear reaction diffusion systems[J]. Science in China(Series A),1989,32(11): 1306-1315.
    [17]
    MO Jiaqi, LIN Wantao. A nonlinear singular perturbed problem for reaction diffusion equations with boundary perturbation[J]. Acta Math Appl Sin,2005,21(1): 101-104.
    [18]
    MO Jiaqi, LIN Wantao, ZHU Jiang. A variational iteration method for studying the ENSO mechanism[J]. Progress in Natural Science,2004,14(12): 1126-1128.
    [19]
    MO Jiaqi, LIN Wantao. Asymptotic solution for a class of sea-air oscillator model for El-Nino-southern oscillation[J]. Chinese Physics B, 2008,17(2): 370-372.
    [20]
    MO Jiaqi, LIN Wantao. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J]. J Sys Sci & Complexity,2008,20(1): 119-128.
    [21]
    MO Jiaqi. Variational iteration solving method for a class of generalized Boussinesq equation[J]. Chin Phys Lett,2009,26(6): 060202.
    [22]
    MO Jiaqi. Homotopiv mapping solving method for gain fluency of a laser pulse amplifier[J]. Science in China, Ser G,2009,52(7): 1007-1010.
    [23]
    FENG Yihu, MO Jiaqi. The shock asymptotic solution for nonlinear elliptic equatiom with two parameters[J]. Math Appl, 2015,27(3): 579-585.
    [24]
    冯依虎, 石兰芳, 汪维刚, 等. 一类广义非线性强阻尼扰动发展方程的行波解[J]. 应用数学和力学, 2015,36(3): 315-324.(FENG Yihu, SHI Lanfang, WANG Weigang, et al. The traveling wave solution for a class of generalized nonlinear strong damping disturbed evolution equations[J]. Applied Mathematics and Mechanics,2015,36(3): 315-324.(in Chinese))
    [25]
    冯依虎, 莫嘉琪. 一类非线性非局部扰动LGH方程的孤立子行波解[J]. 应用数学和力学, 2016,37(4): 426-433.(FENG Yihu, MO Jiaqi. A class of soliton travelling wave solution for the nonlinear nonlocal disturbed LGH equation[J]. Applied Mathematics and Mechanics, 2016,37(4): 426-433.(in Chinese))
    [26]
    FENG Yihu, MO Jiaqi. Asymptotic solution for singularly perturbed fractional order differential equation[J]. J Math,2016,36(2): 239-245.
    [27]
    FENG Yihu, CHEN Xianfeng, MO Jiaqi. The generalized interior shock layer solution of a class of nonlinear singularly perturbed reaction diffusion problem[J]. Math Appl,2016,29(1): 161-165.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1348) PDF downloads(485) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return