Citation: | FENG Yihu, CHEN Huaijun, MO Jiaqi. Asymptotic Solution to a Class of Nonlinear Singular Perturbation Autonomous Differential Systems[J]. Applied Mathematics and Mechanics, 2018, 39(3): 355-363. doi: 10.21656/1000-0887.380110 |
[1] |
CALLOT J L, DIENER F, DIENER M. Le probleme deia “chase au canard”[J]. C R Acad Sci Paris, Ser 1,1978,286(22): 1059-1061.
|
[2] |
ZVOKIN A K, SHUBI M A. Nonstandard analysis and singular perturbation of ordinary differential equations[J].Usp Mat Nauk,1984,39(2): 77-127.
|
[3] |
ECKHAUS W. Relaxation Oscillations Including a Standard Chase on French Ducks [M]. Lect Notes in Math,Vol985. Berlin: Springer-Verlag, 1983: 449-494.
|
[4] |
BENOIT E, LOBRY C. Les canards de R3[J]. C R Acad Sci Paris, Ser 1,1982,294(14): 483-488.
|
[5] |
XU Yun, ZHANG Jianxia, ZU Xia, et al. Nonchaotic random behaviour in the second order autonomous system[J]. Chin Phys,2007,16(8): 2285-2290.
|
[6] |
MISCHENKO E F, ROZOV N. Differential Equations With Small Parameters and Relaxation Oscillations [M]. Moscow: Academic Press, 1975.
|
[7] |
LUTZ R, GOZE M. Nonstandard Analysis, a Practical Guide With Applications [M]. Lect Notes in Math,Vol881. Berlin : Springer-Verlag, 1981.
|
[8] |
EI S I, MIMURA M, NAGAYAMA M. Interacting spots in reaction diffusion systems[J]. Discrete Contin Dyn Syst,2006,14(1): 31-62.
|
[9] |
李翠萍. 奇异摄动与鸭解[J]. 北京航空航天大学学报, 1993,4(1): 84-89.(LI Cuiping. Singular perturbation and duck solutions[J]. Journal of Beijing University of Aeronautics and Astronautics, 1993,4(1): 84-89.(in Chinese))
|
[10] |
LI Cuiping. Duck solutions: a new kind of bifurcation phenomenon in relaxation oscillations[J]. Acta Math Sinica (New Ser),1996,12(1): 89-104.
|
[11] |
李翠萍. 奇异摄动中的鸭解问题[J]. 中国科学(A辑), 1999,29(12): 1084-1093.(LI Cuiping. The duck solution problems in singular perturbation[J]. Science in China(Series A), 1999,29(12): 1084-1093.(in Chinese))
|
[12] |
XIE Feng, HAN Maoan, ZHANG Weijiang. The persistence of canards in 3-D singularly perturbed systems with two fast variables[J].Asymptotic Anal,2006,47(1/2): 95-106.
|
[13] |
徐云, 张建峡, 徐霞, 等. Canard轨迹原理[J]. 物理学报, 2008,57(7): 4029-4033.(XU Yun, ZHANG Jianxia, XU Xia, et al. The principle of the phase track of Canard[J].Acta Phys Sin,2008,57(7): 4029-4033.(in Chinese))
|
[14] |
欧阳成, 姚静荪, 温朝晖, 等. 一类广义鸭轨迹系统轨线的构造[J]. 物理学报, 2012,61(3): 030202.(OUYANG Cheng, YAO Jingsun, WEN Zhaohui, et al. Constructing path curve for a class of generalized phase tracks of canard system[J]. Acta Phys Sin, 2012,61(3): 030202.(in Chinese))
|
[15] |
MO Jiaqi. A singularly perturbed nonlinear boundary value problem[J]. J Math Anal Appl,1993,178(1): 289-293.
|
[16] |
MO Jiaqi. Singular perturbation for a class of nonlinear reaction diffusion systems[J]. Science in China(Series A),1989,32(11): 1306-1315.
|
[17] |
MO Jiaqi, LIN Wantao. A nonlinear singular perturbed problem for reaction diffusion equations with boundary perturbation[J]. Acta Math Appl Sin,2005,21(1): 101-104.
|
[18] |
MO Jiaqi, LIN Wantao, ZHU Jiang. A variational iteration method for studying the ENSO mechanism[J]. Progress in Natural Science,2004,14(12): 1126-1128.
|
[19] |
MO Jiaqi, LIN Wantao. Asymptotic solution for a class of sea-air oscillator model for El-Nino-southern oscillation[J]. Chinese Physics B, 2008,17(2): 370-372.
|
[20] |
MO Jiaqi, LIN Wantao. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J]. J Sys Sci & Complexity,2008,20(1): 119-128.
|
[21] |
MO Jiaqi. Variational iteration solving method for a class of generalized Boussinesq equation[J]. Chin Phys Lett,2009,26(6): 060202.
|
[22] |
MO Jiaqi. Homotopiv mapping solving method for gain fluency of a laser pulse amplifier[J]. Science in China, Ser G,2009,52(7): 1007-1010.
|
[23] |
FENG Yihu, MO Jiaqi. The shock asymptotic solution for nonlinear elliptic equatiom with two parameters[J]. Math Appl, 2015,27(3): 579-585.
|
[24] |
冯依虎, 石兰芳, 汪维刚, 等. 一类广义非线性强阻尼扰动发展方程的行波解[J]. 应用数学和力学, 2015,36(3): 315-324.(FENG Yihu, SHI Lanfang, WANG Weigang, et al. The traveling wave solution for a class of generalized nonlinear strong damping disturbed evolution equations[J]. Applied Mathematics and Mechanics,2015,36(3): 315-324.(in Chinese))
|
[25] |
冯依虎, 莫嘉琪. 一类非线性非局部扰动LGH方程的孤立子行波解[J]. 应用数学和力学, 2016,37(4): 426-433.(FENG Yihu, MO Jiaqi. A class of soliton travelling wave solution for the nonlinear nonlocal disturbed LGH equation[J]. Applied Mathematics and Mechanics, 2016,37(4): 426-433.(in Chinese))
|
[26] |
FENG Yihu, MO Jiaqi. Asymptotic solution for singularly perturbed fractional order differential equation[J]. J Math,2016,36(2): 239-245.
|
[27] |
FENG Yihu, CHEN Xianfeng, MO Jiaqi. The generalized interior shock layer solution of a class of nonlinear singularly perturbed reaction diffusion problem[J]. Math Appl,2016,29(1): 161-165.
|