WANG Xiaoming, XIAO Heng. Comprehensive Simulation of Shape Memory Alloys Based on a Finite Elastoplastic Model[J]. Applied Mathematics and Mechanics, 2018, 39(3): 286-299. doi: 10.21656/1000-0887.380067
Citation: WANG Xiaoming, XIAO Heng. Comprehensive Simulation of Shape Memory Alloys Based on a Finite Elastoplastic Model[J]. Applied Mathematics and Mechanics, 2018, 39(3): 286-299. doi: 10.21656/1000-0887.380067

Comprehensive Simulation of Shape Memory Alloys Based on a Finite Elastoplastic Model

doi: 10.21656/1000-0887.380067
  • Received Date: 2017-03-24
  • Rev Recd Date: 2017-12-27
  • Publish Date: 2018-03-15
  • A new elastoplastic J2 flow model was proposed for shape memory alloys to comprehensively simulate the pseudo-elastic stage with perfect strain recovery, the plastic stage with partial strain recovery and the softening stage up to failure. To this end, a new explicit method based on any given uniaxial data was introduced to obtain the multi-axial expression for the constitutive quantities incorporated in this model. The advantage of this model lies in avoiding the usual complicated numerical procedures in treating nonlinear rate constitutive equations with a number of phase transition conditions and micro-macro averaging methods. Numerical examples give results in good accordance with experiment data.
  • loading
  • [1]
    PATOOR E, EBERHARDT A, BERVEILLER M. Micromechanical modelling of superelasticity in shape memory alloys[J]. Journal de Physique IV,1996,6: C1-277-C1-292.
    [2]
    GAO X, BRINSON L C. A simplified multivariant SMA model based on invariant plane nature of martensitic transformation[J]. Journal of Intelligent Material Systems and Structures,2002,13(12): 795-810.
    [3]
    TOKUDA M, YE M, TAKAKURA M, et al. Thermomechanical behavior of shape memory alloy under complex loading conditions[J]. International Journal of Plasticity,1999,15(2): 223-239.
    [4]
    GALL K, LIM T J, MCDOWELL D L, et al. The role of intergranular constraint on the stress-induced martensitic transformation in textured polycrystalline NiTi[J]. International Journal of Plasticity,2000,16(10/11): 1189-1214.
    [5]
    ANAND L, GURTIN M E. Thermal effects in the superelasticity of crystalline shape-memory materials[J]. Journal of the Mechanics & Physics of Solids,2003,51(6): 1015-1058.
    [6]
    TANAKA K. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior[J]. Res Mechanica,1986,18(3): 251-263.
    [7]
    BRINSON L C. One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J]. Journal of Intelligent Material Systems and Structures,1993,4: 229-242.
    [8]
    朱祎国, 吕和详, 杨大智. 一个新的形状记忆合金模型[J]. 应用数学和力学, 2002,23(9): 896-902.(ZHU Yiguo, L Hexiang, YANG Dazhi. A new model of shape memory alloys[J]. Applied Mathematics and Mechanics,2002,23(9): 896-902.(in Chinese))
    [9]
    霍永忠. 内变量和伪弹性的热力学模型[J]. 应用数学和力学, 1996,17(10): 909-917.(HUO Yongzhong. Internal variables and thermodynamic modeling of pseudoelasticity[J]. Applied Mathematics and Mechanics,1996,17(10): 909-917.(in Chinese))
    [10]
    曾忠敏, 彭向和. 计及相变与塑性的NiTi形状记忆合金循环伪弹性特性描述[J]. 应用数学和力学, 2014,38(8): 850-862.(ZENG Zhongmin, PENG Xianghe. A constitutive description of cyclic pseudoelasticity for the NiTi SMAs involving coupled phase transformation and plasticity[J]. Applied Mathematics and Mechanics,2014,38(8): 850-862.(in Chinese))
    [11]
    ABEYARATNE R, KIM S J. Cyclic effects in shape-memory alloys: a one-dimensional continuum model[J]. International Journal of Solids & Structures,1997,34(25): 3273-3289.
    [12]
    LAGOUDAS D C, ENTHEV P B. Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys, part I: constitutive model for fully dense SMAs[J]. Mechanics of Materials,2004,36(9): 865-892.
    [13]
    ZAKI W, MOUMNI Z. A 3D model of the cyclic thermomechanical behavior of shape memory alloys[J]. Journal of the Mechanics and Physics of Solids,2007,55(11): 2427-2454.
    [14]
    KAN Qianhua, KANG Guozheng. Constitutive model for uniaxial transformation ratchetting of super-elastic NiTi shape memory alloy at room temperature[J]. International Journal of Plasticity,2010,26(3): 441-465.
    [15]
    LAGOUDAS D C, ENTCHEV P B, POPOV P, et al. Shape memory alloys, part II: modeling of polycrystals[J]. Mechanics of Materials,2006,38(5/6): 430-462.
    [16]
    AURICCHIO F, TAYLOR R L. Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior[J]. Computer Methods in Applied Mechanics and Engineering,1997,143(1/2): 175-194.
    [17]
    BATTACHARYA K. Microstructure of Marytensite: Why It Forms and How It Gives Rise to the Shape Memory Effect [M]. Oxford: Oxford University Press, 2003.
    [18]
    LAGOUDAS D C. Shape Memory Alloys: Modeling and Engineering Applications [M]. New York: Springer, 2008.
    [19]
    CISSE C, ZAKI W, ZINEB T B. A review of constitutive models and modeling techniques for shape memory alloys[J]. International Journal of Plasticity,2016,76: 244-284.
    [20]
    CHAO Yu, KANG Guozheng, KAN Qianhua. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals[J]. Journal of the Mechanics & Physics of Solids,2015,82: 97-136.
    [21]
    QIAN Hui, LI Hongnan, SONG Gangbing, et al. A constitutive model for superelastic shape memory alloys considering the influence of strain rate[J]. Mathematical Problems in Engineering,2017, 2013,2013: 206-226.
    [22]
    WANG Jun, MOUMNI Z, ZHANG Weihong, et al. A thermomechanically coupled finite deformation constitutive model for shape memory alloys based on Hencky strain[J].International Journal of Engineering Science,2017,117: 51-77.
    [23]
    WANG Xiaoming, WANG Zhaoling, XIAO Heng. SMA pseudo-elastic hysteresis with tension-compression asymmetry: explicit simulation based on elastoplasticity models[J]. Continuum Mechanics and Thermodynamics,2014,27(6): 959-970. DOI: 10.1007/s00161-014-0394-1.
    [24]
    XIAO Heng. Pseudoelastic hysteresis out of recoverable finite elastoplastic flows[J]. International Journal of Plasticity,2013,41: 82-96.
    [25]
    XIAO H. An explicit, straightforward approach to modeling SMA pseudoelastic hysteresis[J]. International Journal of Plasticity,2014,53: 228-240.
    [26]
    XIAO H, BRUHNS O T, MEYERS A. Elastoplasticity beyond small deformations[J]. Acta Mechanica,2006,182(1/2): 31-111.
    [27]
    XIAO H, BRUHNS O T, MEYERS A. Thermodynamic laws and consistent Eulerian formulations of finite elastoplasticity with thermal effects[J]. Journal of the Mechanics and Physics of Solids,2007,55(2): 338-365.
    [28]
    XIAO H, BRUHNS O T, MEYERS A. The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate[J]. Proceedings: Mathematical, Physical and Engineering Sciences,2000,456(2000): 1865-1882.
    [29]
    XIAO H, BRUHNS O T, MEYERS A. A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient[J]. International Journal of Plasticity,2000,16(2): 143-177.
    [30]
    XIAO H, BRUHNS O T, Meyers A. Logarithmic strain, logarithmic spin and logarithmic rate[J]. Acta Mechanica,1997,124(1/4): 89-105.
    [31]
    SHAW J A, KYRIAKIDES S. Thermomechanical aspects of NiTi[J]. Journal of the Mechanics and Physics of Solids,1995,43(8): 1243-1281.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1092) PDF downloads(859) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return