XU Xue-yan, CHEN Hai-bo, ZHANG Hong-bin, DING Guang-tao. Classical Solutions of Motion for Dyon Systems[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1061-1070. doi: 10.21656/1000-0887.380046
Citation: XU Xue-yan, CHEN Hai-bo, ZHANG Hong-bin, DING Guang-tao. Classical Solutions of Motion for Dyon Systems[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1061-1070. doi: 10.21656/1000-0887.380046

Classical Solutions of Motion for Dyon Systems

doi: 10.21656/1000-0887.380046
Funds:  The National Natural Science Foundation of China(11472063)
  • Received Date: 2017-02-28
  • Rev Recd Date: 2017-07-03
  • Publish Date: 2017-09-15
  • According to the mechanics theories and the classical electromagnetism, the motion of 2-dyon systems was studied. Some integrals of motion, including the energy integral, the total angular momentum integral and the Runge-Lenz-like integral, were derived from the differential equations of motion for the system, then the SO(4) symmetry of the system was exposed. With the inverse problem method of variational calculus, the Lagrangian function and the Hamiltonian function for the 2-dyon system were constructed. The classical motion of the system is completely integrable, the equations of the orbit and the relation between radial distance r and time t are solvable.
  • loading
  • [1]
    Dirac P A M. Quantised singularities in the electromagnetic field[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences,1931,133(821): 60-72.
    [2]
    Schwinger J. A magnetic model of matter[J]. Science,1969,165(3895): 757-761.
    [3]
    XU Bo-wei. On SO(4) symmetry of dyons system[J]. Physica Energiae Portis et Physica Nuclearis,1986,10(2): 249-253.
    [4]
    Ter-Antonyan V M, Nersessian A. Quantum oscillator and a bound system of two dyons[J]. Modern Physics Letters A,1995,10(34): 2633-2638.
    [5]
    Jackson J D. Classical Electrodynamics [M]. 3rd ed. New York: John & Wiley, 1998.
    [6]
    WANG Zhong-yue. Generalized momentum equation of quantum mechanics[J]. Optical and Quantum Electronics,2016,48(2): 107.
    [7]
    Jackson J D, Fox R F. Classical electrodynamics, 3rd ed[J]. American Journal of Physics,1999,67(9): 841.
    [8]
    Becker M, Caprez A, Batelaan H. On the classical coupling between gravity and electromagnetism[J]. Atoms,2015,3(3): 320-338.
    [9]
    LI Kang, CHEN Wen-jun, Naón C M. Classical electromagnetic field theory in the presence of magnetic sources[J]. Chinese Physics Letters,2003,20(3): 321-324.
    [10]
    Santilli R M. Birkhoffian generalization of Hamiltonian mechanics[J]. Journal of Forensic Sciences,1983,54(54):1034-1041.
    [11]
    Arbab A I. Complex Maxwell’s equations[J]. Chinese Physics B,2013,22(3): 030301-030304.
    [12]
    Goldstein H, Poole C, Safko J, et al. Classical mechanics, 3rd ed[J]. American Journal of Physics,2002,70(7): 782-783.
    [13]
    丁光涛. 理论力学[M]. 合肥: 中国科学技术大学出版社, 2013.(DING Guang-tao. Theoretical Mechanics [M]. Hefei: University of Science and Technology of China Press, 2013.(in Chinese))
    [14]
    Santilli R M. Foundations of Theoretical Mechanics II: Birkhoffian Generalization of Hamiltonian Mechanics [M]. New York: Springer-Verlag, 1982.
    [15]
    HE Jin-man, XU Yan-li, LUO Shao-kai. Stability for manifolds of the equilibrium state of fractional Birkhoffian systems[J]. Acta Mechanica,2015,226(7): 2135-2146.
    [16]
    丁光涛. 从第一积分构造Lagrange函数的直接方法[J]. 动力学与控制学报, 2011,9(2): 102-106.(DING Guang-tao. A direct approach to construction of the Lagrangian from the first integral[J]. Journal of Dynamics and Control,2011,9(2): 102-106.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1198) PDF downloads(514) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return