Citation: | TAMAKI Ryoji, YAMAKAWA Masashi. Study on the Nozzle Jet in Arc Spraying[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1394-1402. doi: 10.21656/1000-0887.370554 |
[1] |
Watanabe T, Usui M. Effect of atomizing gas on oxidation of droplets in wire arc spraying[J].Journal of the Japan Institute of Metals,1999,63(1): 98-102.
|
[2] |
Kawase R, Kureishi M, Minehisa S. Relation between arc spraying condition and adhesion strength of sprayed coatings[J].Journal of the Japan Welding Society,1983,1(2/3): 119-124.
|
[3] |
Kawase R, Kureishi M, Maehara K. Arc phenomenon and wire fusion in arc spraying[J]. Journal of the Japan Welding Society,1984,15(2): 34-39.
|
[4] |
Kawase R, Kureishi M. Fused metal temperature in arc spraying[J]. Journal of the Japan Welding Society,1984,2(3): 52-58.
|
[5] |
Kawase R, Kureishi M. Relation between adhesion strength of sprayed coating and fused metal temperature[J].Journal of the Japan Welding Society,1985,16(2): 165-169.
|
[6] |
Kato Koken Co Ltd[Z/OL]. [2016-12-01]. http://www.kokenmpc.co.jp/english/index.html.
|
[7] |
Nishikawa H, Kitamura K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J]. Journal of Computational Physics,2008,227(4): 2560-2581.
|
[8] |
Nishikawa H. Beyond interface gradient: a general principle for constructing diffusion schemes[C]//40th Fluid Dynamics Conference and Exhibit . Chicago, Illinois, 2010: AIAA 2010-5093.
|
[9] |
Nishikawa H. Robust and accurate viscous discretization via upwind scheme—I: basic principle[J]. Computers & Fluids,2011,49(1): 62-86.
|
[10] |
Nishikawa H. Two ways to extend diffusion schemes to Navier-Stokes schemes: gradient formula or upwind flux[C]//20th AIAA Computational Fluid Dynamics Conference. Honolulu, Hawaii, 2011: AIAA 2011-3044.
|