TAMAKI Ryoji, YAMAKAWA Masashi. Study on the Nozzle Jet in Arc Spraying[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1394-1402. doi: 10.21656/1000-0887.370554
Citation: TAMAKI Ryoji, YAMAKAWA Masashi. Study on the Nozzle Jet in Arc Spraying[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1394-1402. doi: 10.21656/1000-0887.370554

Study on the Nozzle Jet in Arc Spraying

doi: 10.21656/1000-0887.370554
  • Received Date: 2016-11-05
  • Rev Recd Date: 2016-11-25
  • Publish Date: 2016-12-15
  • The jet plume formed immediately adjacent to the nozzle of an arc spray gun has a significant effect on the properties of the resultant coating. This study applied the computational fluid dynamics (CFD) and the Schlieren photography to elucidate the properties of jet plumes. The Schlieren images examined revealed that the properties and widths of the plume depend on the direction of material wires for thermal coating. Through the CFD approach, we observed the formation of shock waves immediately after the nozzle aperture and damping of the shock waves in the downstream plume.
  • loading
  • [1]
    Watanabe T, Usui M. Effect of atomizing gas on oxidation of droplets in wire arc spraying[J].Journal of the Japan Institute of Metals,1999,63(1): 98-102.
    [2]
    Kawase R, Kureishi M, Minehisa S. Relation between arc spraying condition and adhesion strength of sprayed coatings[J].Journal of the Japan Welding Society,1983,1(2/3): 119-124.
    [3]
    Kawase R, Kureishi M, Maehara K. Arc phenomenon and wire fusion in arc spraying[J]. Journal of the Japan Welding Society,1984,15(2): 34-39.
    [4]
    Kawase R, Kureishi M. Fused metal temperature in arc spraying[J]. Journal of the Japan Welding Society,1984,2(3): 52-58.
    [5]
    Kawase R, Kureishi M. Relation between adhesion strength of sprayed coating and fused metal temperature[J].Journal of the Japan Welding Society,1985,16(2): 165-169.
    [6]
    Kato Koken Co Ltd[Z/OL]. [2016-12-01]. http://www.kokenmpc.co.jp/english/index.html.
    [7]
    Nishikawa H, Kitamura K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J]. Journal of Computational Physics,2008,227(4): 2560-2581.
    [8]
    Nishikawa H. Beyond interface gradient: a general principle for constructing diffusion schemes[C]//40th Fluid Dynamics Conference and Exhibit . Chicago, Illinois, 2010: AIAA 2010-5093.
    [9]
    Nishikawa H. Robust and accurate viscous discretization via upwind scheme—I: basic principle[J]. Computers & Fluids,2011,49(1): 62-86.
    [10]
    Nishikawa H. Two ways to extend diffusion schemes to Navier-Stokes schemes: gradient formula or upwind flux[C]//20th AIAA Computational Fluid Dynamics Conference. Honolulu, Hawaii, 2011: AIAA 2011-3044.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1004) PDF downloads(553) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return