Citation: | TU Guo-hua, CHEN Jian-qiang, MAO Mei-liang, ZHAO Xiao-hui, LIU Hua-yong. On the Splitting Methods of Inviscid Fluxes for Implementing High-Order Weighted Compact Nonlinear Schemes[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1324-1344. doi: 10.21656/1000-0887.370518 |
[1] |
Ekaterinaris J A. High-order accurate, low numerical diffusion methods for aerodynamics[J].Progress in Aerospace Sciences,2005,41(3/4): 192-300.
|
[2] |
DENG Xiao-gang, MAO Mei-liang, TU Guo-hua, ZHANG Han-xin, ZHANG Yi-feng. High-order and high accurate CFD methods and their applications for complex grid problems[J].Communications in Computational Physics,2012,11(4): 1081-1102.
|
[3] |
DENG Xiao-gang, MAO Mei-liang, TU Guo-hua, LIU Hua-yong, ZHANG Han-xin. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J].Journal of Computational Physics,2011,230(4): 1100-1115.
|
[4] |
DENG Xiao-gang, MAO Mei-liang, TU Guo-hua, ZHANG Yi-feng, ZHANG Han-xin. Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions[J].AIAA Journal,2010,48(12): 2840-2851.
|
[5] |
TU Guo-hua, DENG Xiao-gang, MAO Mei-liang. Implementing high-order weighted compact nonlinear scheme on patched grids with a nonlinear interpolation[J].Computers & Fluids,2013,77: 181-193.
|
[6] |
TU G, Deng X, Liu H, Zhao X. Validation of high-order weighted compact nonlinear scheme for heat transfer of complex hypersonic laminar flows[C]//The 4th Asian Symposium on Computational Heat Transfer and Fluid Flow.Hong Kong, 2013: ASCHT0095-T01-2-A.
|
[7] |
Rizzetta D P, Viabal M R, Morgan P E. A high-order compact finite-difference scheme for large-eddy simulation of active flow control[J]. Progress in Aerospace Sciences,2008,44(6): 397-426.
|
[8] |
Pirozzoli S. Numerical methods for high-speed flows[J].Annual Review of Fluid Mechanics, 2011,43: 163-194.
|
[9] |
DENG Xiao-gang, ZHANG Han-xin. Developing high-order weighted compact nonlinear schemes[J].Journal of Computational Physics,2000,165(1): 22-44.
|
[10] |
Cockburn B, Shu C. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems[J].Journal of Computational Physics,1998,141(2): 199-224.
|
[11] |
TU Guo-hua, YUAN Xiang-jiang, XIA Zhi-qiang, HU Zhen. A class of compact upwind TVD difference schemes[J].Applied Mathematics and Mechanics,2006,27(6): 675-682.
|
[12] |
TU Guo-hua, YUAN Xiang-jiang, LU Li-peng. Developing shock-capturing difference methods[J].Applied Mathematics and Mechanics,2007,28(4): 433-440.
|
[13] |
TU Guo-hua, YUAN Xiang-jiang. A characteristic-based shock-capturing scheme for hyperbolic problems[J].Journal of Computational Physics,2007,225(2): 2083-2097.
|
[14] |
Shu C. High order weighted essentially nonoscillatory schemes for convection dominated problems[J].SIAM Review,2009,51(1): 82-126.
|
[15] |
Wang Z J. High-order methods for the Euler and Navier-Stokes equations on unstructured grids[J].Progress in Aerospace Sciences,2007,43(1/3): 1-41.
|
[16] |
Suresh A, Huynh H T. Accurate monotonicity-preserving schemes with Runge-Kutta time stepping[J].Journal of Computational Physics,1997,136(1): 83-99.
|
[17] |
TU Guo-hua, DENG Xiao-gang, MAO Mei-liang. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J].Chinese Journal of Aeronautics,2012,25(1): 25-32.
|
[18] |
XU Chuan-fu, DENG Xiao-gang, ZHANG Li-lun, FANG Jian-bin, WANG Guang-xue, JIANG Yi, GAO Wei, CHE Yong-gang, WANG Zheng-hua, LIU Wei, CHENG Xing-hua. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer[J].Journal of Computational Physics,2014,278(1): 275-297.
|
[19] |
Kitamura K. Afurther survey of shock capturing methods on hypersonic heating issues[C]//21st AIAA Computational Fluid Dynamics Conference . San Diego, CA, 2013: 2013-2698.
|
[20] |
Kitamura K, Shima E, Roe P L. Carbuncle phenomena and other shock anomalies in three dimensions[J].AIAA Journal,2012,50(12): 2655-2669.
|
[21] |
Kitamura K, Roe P, Ismail F. Evaluation of Euler fluxes for hypersonic flow computations[J].AIAA Journal,2009,47(1): 44-53.
|
[22] |
Kitamura K, Shima E, Nakamura Y, Roe P. Evaluation of Euler fluxes for hypersonic heating computations[J].AIAA Journal,2010,48(4): 763-776.
|
[23] |
TU Guo-hua, ZHAO Xiao-hui, MAO Mei-liang, CHEN Jian-qiang, DENG Xiao-gang, LIU Hua-yong. Evaluation of Euler fluxes by a high-order CFD scheme: shock instability[J].International Journal of Computational Fluid Dynamics,2014,28(5): 171-186.
|
[24] |
Pandolfi M, D’Ambrosio D. Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon[J].Journal of Computational Physics,2001,166(2): 271-301.
|
[25] |
van Leer B. Flux-vector splitting for the Euler equation[M]// Upwind and High-Resolution Schemes . Berlin: Springer Berlin Heidelberg, 1997: 80-89.
|
[26] |
Steger J L, Warming R F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J].Journal of Computational Physics,1981,40(2): 263-293.
|
[27] |
Mandal J C, Deshpande S M. Kinetic flux vector splitting for Euler equations[J].Computers & Fluids,1994,23(2): 447-478.
|
[28] |
Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics,1981,43(2): 357-372.
|
[29] |
Liou M S. Mass flux schemes and connection to shock instability[J].Journal of Computational Physics,2000,160(2): 623-648.
|
[30] |
Kim K H, Lee J H, Rho O H. An improvement of AUSM schemes by introducing the pressure-based weight functions[J].Computers & Fluids,1998,27(3): 311-346.
|
[31] |
Kim K H, Kim C, Rho O H. Methods for the accurate computations of hypersonic flows—I: AUSMPW+ scheme[J].Journal of Computational Physics,2001,174(1): 38-80.
|
[32] |
Einfeldt B, Munz C D, Roe P L, Sjgreen B. On Godunov-type methods near low densities[J].Journal of Computational Physics,1991,92(2): 273-295.
|
[33] |
Harten A, Lax P D, van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[M]// Upwind and High-Resolution Schemes.Berlin: Springer Berlin Heidelberg, 1997: 53-79.
|
[34] |
Batten P, Clarke N, Lambert C, Causon D M. On the choice of wavespeeds for the HLLC Riemann solver[J].SIAM Journal on Scientific Computing,1997,18(6): 1553-1570.
|
[35] |
Toro E F.Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[M]. 3rd ed. Springer, 2009.
|
[36] |
ZHANG Han-xin, ZHUANG Feng-gan. NND schemes and their applications to numerical simulation of two- and three-dimensional flows[J].Advances in Applied Mechanics,1991,29: 193-256.
|
[37] |
TU Guo-hua, DENG Xiao-gang, MAO Mei-liang. A staggered non-oscillatory finite difference method for high-order discretization of viscous terms[J].Acta Aerodynamica Sinica,2011,29(1): 10-15.
|
[38] |
DENG Xiao-gang, MAO Mei-liang, TU Guo-hua, LIU Hua-yong, ZHANG Han-xin. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J].Journal of Computational Physics,2011,230(4): 1100-1115.
|
[39] |
Kopriva D A. Spectral solution of the viscous blunt-body problem[J].AIAA Journal,1993,31(7): 1235-1242.
|
[40] |
Longo J M A, Hannemann K, Hannemann V. The challenge of modeling high speed flows[C]// The EUROSIM.2007.
|
[41] |
Holden M S, Wadhams T P. A database of aerothermal measurements in hypersonic flow “building block” experiment for CFD validation[C]//41st AIAA Aerospace Sciences Meeting and Exhibit.Reno, Nevada, 2003: AIAA 2003-1137.
|
[42] |
Kirk B S, Carey G F. Validation of fully implicit, parallel finite element simulations of laminar hypersonic flows[J].AIAA Journal,2010,48(6): 1025-1036.
|