WANG Shuangming, ZHANG Mingjun, FAN Xinman. Spatial Dynamics of Periodic ReactionDiffusion Epidemic Models With Delay and Logistic Growth[J]. Applied Mathematics and Mechanics, 2018, 39(2): 226-238. doi: 10.21656/1000-0887.370301
Citation: WANG Shuangming, ZHANG Mingjun, FAN Xinman. Spatial Dynamics of Periodic ReactionDiffusion Epidemic Models With Delay and Logistic Growth[J]. Applied Mathematics and Mechanics, 2018, 39(2): 226-238. doi: 10.21656/1000-0887.370301

Spatial Dynamics of Periodic ReactionDiffusion Epidemic Models With Delay and Logistic Growth

doi: 10.21656/1000-0887.370301
Funds:  The National Natural Science Foundation of China(61662066)
  • Received Date: 2016-09-30
  • Rev Recd Date: 2017-12-21
  • Publish Date: 2018-02-15
  • The dynamics of periodic reactiondiffusion epidemic models with delay and logistic growth was investigated based on the theory of dynamic systems. Firstly, the existence of the global attractor of the ω operator associated with the periodic semiflow was proved. Next, the basic reproduction number of the model was introduced via the next generation operator. Finally, by means of the persistence theory and the comparison principle, the sufficient conditions for the disease persistence and extinction were obtained. If the basic reproduction number is less than 1, the diseasefree periodic solution will be globally asymptotically stable and the disease will go extinct. If the basic reproduction number is greater than 1, the system will be uniformly persistent and the disease will become endemic.
  • loading
  • [1]
    马知恩, 周义仓, 王稳地,等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2004: 1-24.(MA Zhien, ZHOU Yicang, WANG Wendi, et al. Mathematics Modeling and Research of Infectious Disease Dynamics [M]. Beijing: Science Press, 2004: 1-24.(in Chinese))
    [2]
    王拉娣. 传染病动力学模型及控制策略研究[D]. 博士学位论文. 上海: 上海大学, 2005: 1-9.(WANG Ladi. Infectious disease dynamics and controlling strategy[D]. PhD Thesis. Shanghai: Shanghai University, 2005: 1-9.(in Chinese))
    [3]
    谢英超, 程燕, 贺天宇. 一类具有非线性发生率的时滞传染病模型的全局稳定性[J]. 应用数学和力学, 2015,36(10): 1107-1116.(XIE Yingchao, CHENG Yan, HE Tianyu. Global stability of a class of delayed epidemic models with nonlinear incidence rates[J]. Applied Mathematics and Mechanics,2015,36(10): 1107-1116.(in Chinese))
    [4]
    PENG Rui, ZHAO Xiaoqiang. A reaction-diffusion SIS epidemic model in a time-periodic environment[J]. Nonlinearity,2012,25(5): 1451-1471.
    [5]
    VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences,2002,180(1): 29-48.
    [6]
    杨亚莉, 李建全, 刘万萌, 等. 一类具有分布时滞和非线性发生率的媒介传染病模型的全局稳定性[J]. 应用数学和力学, 2013,34(12): 1291-1299.(YANG Yali, LI Jianquan, LIU Wanmeng, et al. Global stability of a vector-borne epidemic model with distributed delay and nonlinear incidence[J]. Applied Mathematics and Mechanics,2013,34(12): 1291-1299.(in Chinese))
    [7]
    THIEME H R. Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity[J]. SIAM Journal on Applied Mathematics,2009,70(1): 188-211.
    [8]
    BACAR N. Genealogy with seasonality, the basic reproduction number, and the influenza pandemic[J]. Journal of Mathematical Biology,2011,62(5): 741-762.
    [9]
    WANG Wendi, ZHAO Xiaoqiang. Threshold dynamics for compartmental epidemic models in periodic environments[J]. Journal of Dynamics and Differential Equations,2008,20(3): 699-717.
    [10]
    王智诚, 王双明. 一类时间周期的时滞反应扩散模型的空间动力学研究[J]. 兰州大学学报(自然科学版), 2013,49(4): 535-540.(WANG Zhicheng, WANG Shuangming. Spatial dynamics of a class of delayed nonlocal reaction-diffusion models with a time period[J]. Journal of Lanzhou University(Natural Sciences),2013,49(4): 535-540.(in Chinese))
    [11]
    WANG Shuangming, ZHANG Liang. Dynamics of a time-periodic and delayed reaction-diffusion model with a quiescent stage[J]. Electronic Journal of Qualitative Theory of Differential Equations,2016,47: 1-25.
    [12]
    ZHANG Liang, WANG Zhicheng. Spatial dynamics of a diffusive predator-prey model with stage structure[J]. Discrete and Continuous Dynamical Systems—Series B,2015,20(6): 1831-1853.
    [13]
    王双明. 一类具有时滞的周期流行病模型的动力学分析[J]. 山东大学学报(理学版), 2017,52(1): 81-87.(WANG Shuangming. Dynamical analysis of a class of periodic epidemic model with delay[J]. Journal of Shandong University (Natural Science),2017,52(1): 81-87.(in Chinese))
    [14]
    ZHAO Xiaoqiang. Basic reproduction ratios for periodic compartmental models with time delay[J]. Journal of Dynamics and Differential Equations,2015,29(1): 1-16.
    [15]
    ZHANG Liang, WANG Zhicheng, ZHAO Xiaoqiang. Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period[J]. Journal of Differential Equations,2015,258(9): 3011-3036.
    [16]
    MARTIN R H, SMITH H L. Abstract functional-differential equations and reaction-diffusion systems[J]. Transactions of the American Mathematical Society,1990,321(1): 1-44.
    [17]
    ZAOH Xiaoqiang. Dynamical Systems in Population Biology [M]. New York: Springer-Verlag, 2003: 1-65.
    [18]
    Hess P. Periodic-Parabolic Boundary Value Problems and Positivity [M]. UK: Longman Scientific and Technical, 1991: 91-93.
    [19]
    MAGAL P, ZHAO Xiaoqiang. Global attractors and steady states for uniformly persistent dynamical systems[J].SIAM J Math Anal,2005,37: 251-275.
    [20]
    LOU Yijun, ZHAO Xiaoqiang. Threshold dynamics in a time-delayed periodic SIS epidemic model[J]. Discrete and Continuous Dynamical Systems—Series B,2009,12: 169-186.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1589) PDF downloads(761) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return