Citation: | FAN Tian-you. Generalized Hydrodynamics for Second 2D Soft-Matter Quasicrystals[J]. Applied Mathematics and Mechanics, 2017, 38(2): 189-199. doi: 10.21656/1000-0887.370198 |
[1] |
范天佑. 软物质准晶广义流体动力学方程组[J]. 应用数学和力学, 2016,37(4): 331-344.(FAN Tian-you. Equation systems of generalized hydrodynamics for soft-matter quasicrystals[J]. Applied Mathematics and Mechanics,2016,37(4): 331-344.(in Chinese))
|
[2] |
HU Cheng-zheng, DING Di-hua, YANG Wen-ge, et al. Possible two-dimensional quasicrystals structures with a six-dimensional embedding space[J]. Phys Rev B,1994,49(14): 9423-9427.
|
[3] |
Anderson P W. Basic Notations of Condensed Matter Physics [M]. Menlo Park: Benjamin-Cummings, 1984.
|
[4] |
DING Di-hua, YANG Wen-ge, HU Cheng-zheng, et al. Generalized elasticity theory of quasicrystals[J]. Phys Rev B,1993,48(10): 7003-7010.
|
[5] |
Fan T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications [M]. 2nd ed. Beijing: Science Press, 2016.
|
[6] |
范天佑. 固体与软物质准晶数学弹性与相关理论及应用[M]. 北京: 北京理工大学出版社, 2014.(FAN Tian-you. Mathematical Theory of Elasticity and Relevant Topics of Solid and Soft-matter Quasicrystals and Its Applications [M]. Beijing: Beijing Institute of Technology Press, 2014.(in Chinese))
|
[7] |
杨振宁. 序[M]//李华钟. 量子几何相位概论. 北京: 科学出版社, 2013.(YANG Chen-ning. Preface[M]//LI Hua-zong. Introduction to Quantum Geometry Phase.Beijing: Science Press, 2013.(in Chinese))
|
[8] |
Yang C N. Square root of minus one, complex phases and Erwin Schrdinger[C]//Kilmister C W, ed. Schrdinger Century Celebration of a Polymath,1987.New York: Cambridge University Press, 2012: 53-84.
|
[9] |
Landau L D, Lifshitz E M. Statistical Physics [M]. Part 2, Oxford: Pergamon Press, 1980.
|
[10] |
Dzyaloshinskii I E, Volovick G E. On the concept of local invariance in the theory of spin glasses[J]. Journal de Physique,1978,39(6): 693-700.
|
[11] |
Volovick G E, Dzyaloshinskiǐ I E . Additional localized degrees of freedom in spin glasses[J]. Zh Eksp Teor Fiz,1978,75(7): 1102-1109.
|