GUO Li-na, CHEN Ai-yong, HUANG Wen-tao. Wave Lengths of Periodic Waves for the Vakhnenko Equation[J]. Applied Mathematics and Mechanics, 2016, 37(7): 678-690. doi: 10.21656/1000-0887.370020
Citation: GUO Li-na, CHEN Ai-yong, HUANG Wen-tao. Wave Lengths of Periodic Waves for the Vakhnenko Equation[J]. Applied Mathematics and Mechanics, 2016, 37(7): 678-690. doi: 10.21656/1000-0887.370020

Wave Lengths of Periodic Waves for the Vakhnenko Equation

doi: 10.21656/1000-0887.370020
Funds:  The National Natural Science Foundation of China(11361017)
  • Received Date: 2016-01-13
  • Rev Recd Date: 2016-01-25
  • Publish Date: 2016-07-15
  • The wave lengths of smooth periodic traveling wave solutions to the Vakhnenko equation were studied. The Vakhnenko equation was reduced to a planar polynomial differential system through the transformation of variables. The polynomial differential system was treated with the critical period bifurcation method based on the dynamical system theory. The main results involve the monotonicity properties of periodic function T(h) (or wave length function λ(a)). In comparison with the wave length for the KdV equation, wave length function λ(a) monotonically decreases to a finite value rather than monotonically increases to infinity. This shows that, for fixed wave speed c, there exist no smooth periodic wave solutions with arbitrarily small wave lengths or arbitrarily large wave lengths, to the Vakhnenko equation.
  • loading
  • [1]
    Vakhnenko V O. Solitons in a nonlinear model medium[J].Journal of Physics A: Mathematical and General,1992,25(15): 4181-4187.
    [2]
    Vakhnenko V O, Parkes E J. The two loop soliton solution of the Vakhnenko equation[J].Nonlinearity,1998,11(6): 1457-1464.
    [3]
    Morrison A J, Parkes E J, Vakhnenko V O. TheN loop soliton solution of the Vakhnenko equation[J].Nonlinearity,1999,12(5): 1427-1437.
    [4]
    Chow S N, Sanders J A. On the number of critical points of the period[J].Journal of Differential Equations,1986,64(1): 51-66.
    [5]
    Chicone C, Jacobs M. Bifurcation of critical periods for plane vector fields[J].Transactions of the American Mathematical Society,1989,312(2): 433-486.
    [6]
    Sabatini M. On the period function of Liénard systems[J].Journal of Differential Equations,1999,152(2): 467-487.
    [7]
    ZHAO Yu-lin. The monotonicity of the period function for codimension four quadratic systemQ4[J].Journal of Differential Equations,2002,185(1): 370-387.
    [8]
    LI Cheng-zhi, LU Ke-ning. The period function of hyperelliptic Hamiltonians of degree 5 with real critical points[J].Nonlinearity,2008,21(3): 465-483.
    [9]
    Gasull A, LIU Chang-jian, YANG Jia-zhong. On the number of critical periods for planar polynomial systems of arbitrary degree[J].Journal of Differential Equations,2010,249(3): 684-692.
    [10]
    CHEN Xing-wu, Romanovski V G, ZHANG Wei-nian. Critical periods of perturbations of reversible rigidly isochronous centers[J].Journal of Differential Equations,2011,251(6): 1505-1525.
    [11]
    Garijo A, Villadelpra J. Algebraic and analytical tools for the study of the period function[J].Journal of Differential Equations,2014,257(7): 2464-2484.
    [12]
    Constantin A. The trajectories of particles in Stokes waves[J].Inventiones Mathematicae,2006,166(3): 523-535.
    [13]
    CHEN Ai-yong, LI Ji-bin, HUANG Wen-tao. The monotonicity and critical periods of periodic waves of the φ6 field model[J].Nonlinear Dynamics,2011,63(1/2): 205-215.
    [14]
    Geyer A, Villadelprat J. On the wave length of smooth periodic traveling waves of the Camassa-Holm equation[J].Journal of Differential Equations,2015,259: 2317-2332.
    [15]
    LI Ji-bin.Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions[M]. Beijing: Science Press, 2013.
    [16]
    LI Ji-bin, CHEN Guan-rong. On a class of singular nonlinear traveling wave equations[J].International Journal of Bifurcation and Chaos,2007,17(11): 4049-4065.
    [17]
    LI Ji-bin, DAI Hui-hui.On the Study of Singular Nonlinear Traveling Wave Equations: Dynamical System Approach[M]. Beijing: Science Press, 2007.
    [18]
    CHEN Ai-yong, WEN Shuang-quan, TANG Sheng-qiang, HUANG Wen-tao, QIAO Zhi-qun. Effects of quadratic singular curves in integrable equations[J].Studies in Applied Mathematics,2015,134(1): 24-61.
    [19]
    李春海, 朱文静, 陈爱永, 王红浩. 浅水中度振幅孤立波解的分支[J]. 应用数学和力学, 2014,35(9): 1002-1010.(LI Chun-hai, ZHU Wen-jing, CHEN Ai-yong, WANG Hong-hao. Bifurcations of solitary wave solutions of moderate amplitude in shallow water[J].Applied Mathematics and Mechanics,2014,35(9): 1002-1010.(in Chinese))
    [20]
    Christov O, Hakkaev S, Iliev I D. Non-uniform continuity of periodic Holm-Staleyb -family of equations[J].Nonlinear Analysis,2010,75(13): 4821-4838.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1141) PDF downloads(877) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return