SHI Juan-rong, MO Jia-qi. Asymptotic Solutions to a Class of Singular Perturbation Burning Models[J]. Applied Mathematics and Mechanics, 2016, 37(7): 691-698. doi: 10.21656/1000-0887.360293
Citation: SHI Juan-rong, MO Jia-qi. Asymptotic Solutions to a Class of Singular Perturbation Burning Models[J]. Applied Mathematics and Mechanics, 2016, 37(7): 691-698. doi: 10.21656/1000-0887.360293

Asymptotic Solutions to a Class of Singular Perturbation Burning Models

doi: 10.21656/1000-0887.360293
Funds:  The National Natural Science Foundation of China(41275062;11202106)
  • Received Date: 2015-10-27
  • Rev Recd Date: 2015-11-27
  • Publish Date: 2016-07-15
  • A class of nonlinear singularly perturbed burning models with two parameters were discussed. Firstly, the outer solution to the burning model was constructed with the perturbation method. Secondly, through the introduction of a stretched variable, the initial layer correction term of the solution to the burning model was constructed. Then the multi-scale method and the composite expansion method were used to build the boundary layer correction term of the model solution and find the asymptotic solution to the original initial boundary value problem. Finally, the uniform validity of the obtained asymptotic solution was proved according to the theory of differential inequalities. The proposed solving method for this class of nonlinear singularly perturbed burning models is convenient and practicable.
  • loading
  • [1]
    de Jager E M, JIANG Fu-ru. The Theory of Singular Perturbation[M]. Amsterdam: North-Holland Publishing Co, 1996.
    [2]
    Barbu L, Moroanu G. Singularly Perturbed Boundary-Value Problems[M]. Basel: Birkhauserm Verlag AG, 2007.
    [3]
    Chang K W, Howes F A. Nonlinear Singular Perturbation Phenomena: Theory and Applications[M]. Applied Mathematical Science,Vol56. Springer-Verlag, 1984.
    [4]
    Martínez S, Wolanski N. A singular perturbation problem for a quasi-linear operator satisfying the natural growth condition of Lieberman[J]. SIAM Journal on Mathematical Analysis,2009,41(1): 318-359.
    [5]
    Kellogg R B, Kopteva N. A singularly perturbed semilinear reaction-diffusion problem in a polygonal domain[J]. Journal of Differential Equations,2010,248(1): 184-208.
    [6]
    TIAN Can-rong, ZHU Peng. Existence and asymptotic behavior of solutions for quasilinear parabolic systems[J]. Acta Applicandae Mathematicae,2012,121(1): 157-173.
    [7]
    Skrynnikov Y. Solving initial value problem by matching asymptotic expansions[J]. SIAM Journal on Applied Mathematics,2012,72(1): 405-416.
    [8]
    Samusenko P F. Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations[J]. Journal of Mathematical Sciences,2013,189(5): 834-847.
    [9]
    MO Jia-qi. Singular perturbation for a class of nonlinear reaction diffusion systems[J]. Science in China(Ser A),1989,32(11): 1306-1315.
    [10]
    MO Jia-qi, LIN Wan-tao. Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations[J]. Journal of Systems Science and Complexity,2008,20(1): 119-128.
    [11]
    MO Jia-qi. Approximate solution of homotopic mapping to wave solitary for generalized nonlinear KdV system[J]. Chinese Physics Letters,2009,26(1): 010204-1-010204-4.
    [12]
    MO Jia-qi. Homotopic mapping solving method for gain fluency of a laser pulse amplifier[J]. Science in China (Series G): Physics, Mechanics & Astronomy,2009,39(7): 1007-1010.
    [13]
    MO Jia-qi, CHEN Xian-feng. Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation[J]. Chinese Physics B,2010,10(10): 100203-1-100203-4.
    [14]
    莫嘉琪, 刘树德, 唐荣荣. 一类奇异摄动非线性方程Robin问题激波的位置[J]. 物理学报, 2010,59(7): 4403-4408.(MO Jia-qi, LIU Shu-de, TANG Rong-rong. Shock position for a class of Robin problems of singularly perturbed nonlinear equation[J]. Acta Physica Sinica,2010,59(7): 4403-4408.(in Chinese))
    [15]
    MO Jia-qi, CHEN Huai-jun. The corner layer solution of Robin problem for semilinear equation[J]. Mathematica Applicata,2012,25(1): 1-4.
    [16]
    MO Jia-qi, WANG Wei-gang, CHEN Xian-feng, SHI Lan-fang. The shock wave solutions for singularly perturbed time delay nonlinear boundary value problems with two papameters[J]. Mathematica Applicata,2014,27(3): 470-475.
    [17]
    史娟荣, 石兰芳, 莫嘉琪. 一类非线性强阻尼扰动发展方程的解[J]. 应用数学和力学, 2014,35(9): 1046-1054.(SHI Juan-rong, SHI Lan-fang, MO Jia-qi. Solutions to a class of nonlinear strong-damp disturbed evolution equations[J]. Applied Mathematics and Mechanics,2014,35(9): 1046-1054.(in Chinese))
    [18]
    SHI Juan-rong, LIN Wan-tao, MO Jia-qi. The singularly perturbed solution for a class of quasilinear nonlocal problem for higher order with two parameters[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2015,48(1): 85-91.
    [19]
    史娟荣, 吴钦宽, 莫嘉琪. 非线性扰动广义NNV系统的孤立子渐近行波解[J]. 应用数学和力学, 2015,36(9): 1003-1010.(SHI Juan-rong, WU Qin-kuan, MO Jia-qi. Asymptotic travelling wave soliton solutions for nonlinear disturbed generalized NNV systems[J]. Applied Mathematics and Mechanics,2015,36(9): 1003-1010.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1170) PDF downloads(545) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return