2019, 40(8): 840-855.
doi: 10.21656/1000-0887.390344
Abstract:
The 3D hydrodynamic model plays an important role in accurate simulation of the physical characteristics of the ocean. The complex highorder terms are discarded in the traditional σ coordinate transformation due to the limitation of the computer ability, which causes certain errors or calculation distortions for actual complex terrains (or water depth variations). Therefore, the existent σ coordinate 3D hydrodynamic model was modified in order to meet the needs for highprecision calculation results. In the improved model, the complex highorder terms related to the flow velocity, the water level and the terrain introduced through the σ coordinate transformation were comprehensively considered. The specific interpolation function and the combination of the FEM and the FDM were used to solve the complete 3D shallow water model equations in the σ coordinate system. Compared with the existent model, the improved model has a wider range of applications for changes in the bottom slope, the water depth and the tidal amplitude, which could improve the simulation of the vertical flow distribution characteristics under complex water depth changes and promote the accuracy of the calculation results. The calculation error can be kept in a small range in the improved model under some extreme water conditions (with a tidal amplitude to water depth ratio greater than 0.15), and the improved model can reach a steady state in a short time.