2018 Vol. 39, No. 6

Display Method:
Optical Measurement of Heated-Front-Surface Strains for Components in High Temperature Environments up to 1200 ℃
WU Dafang, WANG Huaitao, ZHU Fanghui
2018, 39(6): 631-644. doi: 10.21656/1000-0887.390084
Abstract(2097) HTML (298) PDF(707)
Abstract:
The external surface of a hypersonic vehicle flying in the atmosphere is facing a severe high-temperature environment due to aerodynamic heating. While in the aerodynamic thermal simulation test, the deformation measurement of heated front surface of aircraft components under high temperature condit...
Research and Simulation of Mechanical Properties of GFRP Launching Tubes
HE Zepeng, BI Shihua, MA Yue, LUO Bixia
2018, 39(6): 645-656. doi: 10.21656/1000-0887.390085
Abstract(1577) HTML (320) PDF(1450)
Abstract:
The launching tube is an important part of the rocket system. In the process of longterm storage, aging phenomena inevitably occur under various stress and environment factors, with important influences on the system reliability. The glass fibre reinforced plastic (GFRP) launching tube was studied ...
Thermal Deformation Analysis and Structural Optimization of HighPrecision Reflector Engineering Models on Satellites
LI Yanyong, WEI Juanfang, JIANG Wenjian
2018, 39(6): 657-664. doi: 10.21656/1000-0887.390089
Abstract(1542) HTML (263) PDF(591)
Abstract:
The finite element modeling method and material parameter valuing method were presented for a 2 m diameter satellite reflector engineering model, including the honeycomb sandwich structure, the backframe tubes and the patches connecting the back frame and the reflector. The thermal deformation and ...
Application of Strain-Rate-Dependent Material Models to Aero-Engine Honeycomb Casing Analysis
MENG Weihua, WANG Jianjun, MI Dong, WANG Wenjun, GUO Weiguo
2018, 39(6): 665-671. doi: 10.21656/1000-0887.390087
Abstract(1522) HTML (264) PDF(885)
Abstract:
For typical honeycomb materials used in turbine casings of aero-engines to prevent blades from scraping the casing, 2 commonly used material models, the Johnson-Cook model and the honeycomb equivalent model, and the relevant calibration methods were discussed. Then the 2 models were implemented in t...
An Equivalent Micropolar Beam Method for Grid Sandwich Structures Under Inhomogeneous Temperature Conditions
ZHANG Rui, FENG Ya, YANG Shuo
2018, 39(6): 672-680. doi: 10.21656/1000-0887.390086
Abstract(1486) HTML (257) PDF(399)
Abstract:
The grid sandwich structure was equivalent to a continuous micropolar elastic material with the method of cell energy equivalence, and the constitutive relation of the equivalent micropolar elastic material was obtained. Based on the geometrical relation and the equilibrium condition, the governing ...
Research on Dynamic Behavior and a Failure-Model for GH4133B Superalloy
MENG Weihua, WANG Jianjun, LI Jian, GUO Xiaojun, GUO Weiguo
2018, 39(6): 681-688. doi: 10.21656/1000-0887.390088
Abstract(1320) HTML (223) PDF(558)
Abstract:
According to the experimental results of dynamic properties of typical aero-engine casing material GH4133B at different temperatures (298~1 073K) and strain rates (10-1~5×103s-1), and in view of intrinsic defects of the J-C model used in the analysis of casing acceptance in engineering applications,...
Dynamic Responses of Saturated Porous Foundations Under Coupled Thermo-Hydro-Mechanical Effects
XIONG Chunbao, GUO Ying, DIAO Yu
2018, 39(6): 689-699. doi: 10.21656/1000-0887.380140
Abstract(1679) HTML (324) PDF(609)
Abstract:
Based on Lord and Shulman’s generalized thermoelastic theory with the relaxation time, the coupled thermo-hydro-mechanical problem for a poroelastic half-space foundation medium subjected to conoidal waves on its surface was investigated. Through modification of Biot’s theory of dynamic poroelastici...
A Multi-Level Method for Hierarchical Quadratic Discretizations of Thin-Walled Structures in 3D Heat Conduction
ZHANG Shen, XIAO Yingxiong, GUO Ruiqi
2018, 39(6): 700-713. doi: 10.21656/1000-0887.380035
Abstract(1395) HTML (210) PDF(869)
Abstract:
When the finite element method is applied to analyze the 3D thin-walled structures, some thin hexahedral elements are usually used in order to reduce the number of elements, and the corresponding higher-order elements are preferred since they have some obvious advantages in the calculation accuracy,...
Equivalent ThermoElasticity Analysis of 2D Lattice Structures With Periodic Unit Cells
ZHANG Zhaohui, LI Baohui, SHI Jiao
2018, 39(6): 714-727. doi: 10.21656/1000-0887.390025
Abstract(1056) HTML (161) PDF(809)
Abstract:
The thermo-elasticity of 2D lattice structures with periodic unit cells was studied. The lattice structure was homogenized as a pseudo-membrane (PM) structure and the equivalent thermal expansion coefficients (TECs) of the PM were derived. The TECs were expressed as explicit functions of the geometr...
A New Method for Solving Heat Transfer Problems of Laminate Materials Based on the Differential Theory
LI Xixia, DAI Haiyan, LI Changyu
2018, 39(6): 728-736. doi: 10.21656/1000-0887.380116
Abstract(1158) HTML (204) PDF(919)
Abstract:
A new analytical method for solving heat transfer problems of laminate materials was proposed based on the differential theory. The curves of temperature variation at the interface of the laminate material were approximately linear in a small time interval. With the method of separation of variables...