Abstract:
Janus microspheres are a special class of particles with regular shape but irregular surface composition. On the PIV experimental platform, a selfpropulsion experiment about Pt-SiO2 Janus microspheres with 1μm and 2μm diameters was carried out. The stochastic trajectories of the particles selfpropelled by the asymmetrical catalytic decomposition of H2O2 were obtained. The Hurst indexes related to different observation time intervals were calculated through statistic analysis of the particles suspended in different concentration (0%, 2.5%, 5%, 10% and 15%) solutions. From the experimental data, it is clear that the stochastic trajectory of a Janus microsphere is the superposition of a random motion and a directional motion, and the particle undergoes abnormal diffusion. Then, the current complex motion is deemed as the combined action of Brownian motion, selfpropulsion and random rotation. The characteristic time scales, within which different dynamic factors are dominating, are obtained, and the model presents a reasonable explanation about the observed phenomena.