Abstract:
The pressure wave velocity equation for water-oil emulsion flow with gas hydrate in pipeline transportation systems was established in view of gas hydrate phase transition, compressibility of oil phase, influence of angular frequency, virtual mass force and system temperature and pressure. The results show that the gas hydrate has great influences on the pressure wave velocity of the water-oil system during pipeline transportation. In the gas hydrate decomposition region, the emergence of gas increases the compressibility of the system significantly. As a result, the pressure wave velocity falls rapidly. In the gas hydrate formation region, the compressibility of the system decreases, while the pressure wave velocity rises on the contrary. The pressure, temperature, oil-water ratio, density of oil phase, and pipe diameter all have distinct impact on the pressure wave velocity. The pressure wave velocity shows a falling tendency with the decrease of oil-water ratio, pipe diameter and temperature. A rising tendency of the pressure wave velocity occurs with the increase of pressure and density of oil phase. The pressure and temperature have effects on the hydrate decomposition rate, in turn influence the pressure wave velocity.