留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解多维Euler方程的二阶旋转混合型格式

刘友琼 封建湖 任炯 龚承启

刘友琼, 封建湖, 任炯, 龚承启. 求解多维Euler方程的二阶旋转混合型格式[J]. 应用数学和力学, 2014, 35(5): 542-553. doi: 10.3879/j.issn.1000-0887.2014.05.008
引用本文: 刘友琼, 封建湖, 任炯, 龚承启. 求解多维Euler方程的二阶旋转混合型格式[J]. 应用数学和力学, 2014, 35(5): 542-553. doi: 10.3879/j.issn.1000-0887.2014.05.008
LIU You-qiong, FENG Jian-hu, REN Jiong, GONG Cheng-qi. A Second-Order Rotated-Hybrid Scheme for Solving Multi-Dimensional Compressible Euler Equations[J]. Applied Mathematics and Mechanics, 2014, 35(5): 542-553. doi: 10.3879/j.issn.1000-0887.2014.05.008
Citation: LIU You-qiong, FENG Jian-hu, REN Jiong, GONG Cheng-qi. A Second-Order Rotated-Hybrid Scheme for Solving Multi-Dimensional Compressible Euler Equations[J]. Applied Mathematics and Mechanics, 2014, 35(5): 542-553. doi: 10.3879/j.issn.1000-0887.2014.05.008

求解多维Euler方程的二阶旋转混合型格式

doi: 10.3879/j.issn.1000-0887.2014.05.008
基金项目: 国家自然科学基金(11171043);长安大学中央高校基本科研业务费项目(CHD2102TD015)
详细信息
    作者简介:

    刘友琼(1989—),女,云南人,硕士生(E-mail: youqiongliu@163.com)

  • 中图分类号: O354;O241.82

A Second-Order Rotated-Hybrid Scheme for Solving Multi-Dimensional Compressible Euler Equations

Funds: The National Natural Science Foundation of China(11171043)
  • 摘要: 提出了一个基于旋转Riemann求解器的二阶精度的Euler(欧拉)通量函数.不同于“网格相关”的有限体积方法或者维数分裂的有限差分方法,本格式是基于旋转Riemann求解器将HLLC格式与HLL格式进行特定结合而得到的一类混合型数值格式.在激波法向采用HLL格式从而抑制红斑现象,在激波方向采用HLLC格式从而避免产生过多的耗散.新的旋转混合型格式具有结构简单、无红斑、高分辨率等优点.数值算例充分说明了新格式消除Euler方程激波不稳定现象的有效性和鲁棒性.
  • [1] Quirk J J. A contribution to the great Riemann solver debate[J].International Journal for Numerical Methods in Fluids,1994,18(6): 555-574.
    [2] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics,1981,43(2): 357-372.
    [3] Toro E F, Spruce M, Speares W. Restoration of the contact surface in the HLL-Riemann solver[J].Shock Waves,1994,4(1): 25-34.
    [4] Pandolfi M, D’ Ambrosio D. Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon[J].Journal of Computational Physics,2000,166(2): 271-301.
    [5] Chauvat Y, Moschetta J-M, Gressier J. Shock wave numerical structure and the carbuncle phenomenon[J].International Journal for Numerical Methods in Fluids,2005,47(8/9): 903-909.
    [6] Liou M S. Mass flux schemes and connection to shock instability[J].Journal of Computational Physics,2000,160(2): 623-648.
    [7] XU Kun, LI Zuo-wu. Dissipative mechanism in Godunov-type schemes[J].International Journal for Numerical Methods in Fluids,2001,37(1): 1-22.
    [8] Kim S-S, Kim C, Rho O-H, Hong S K. Cures for the shock instability: development of a shock-stable Roe scheme[J].Journal of Computational Physics,2003,185(2): 342-374.
    [9] Dumbser M, Morschetta J-M, Gressier J. A matrix stability analysis of the carbuncle phenomenon[J].Journal of Computational Physics,2004,197(2): 647-670.
    [10] Ismail F. Toward a reliable prediction of shocks in hypersonic flows: resolving carbuncles with entropy and vorticity control[D]. PhD Thesis. Ann Arbor, MI: University of Michigan, 2009.
    [11] Nishikawa H, Kitamura K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J].Journal of Computational Physics,2008,227(4): 2560-2581.
    [12] Levy D W, Powell K G, Van Leer B. Use of a rotated Riemann solver for the two-dimensional Euler equations[J].Journal of Computational Physics,1993,106(2): 201-214.
    [13] REN Yu-xin. A robust shock-capturing scheme based on rotated Riemann solver for the two-dimensional Euler equations[J].Computers and Fluids,2003,32(11): 1379-1403.
    [14] Janhunen P. A positive conservative method for magnetohydrodynamics based on HLL and Roe methods[J].Journal of Computational Physics,2000,160(2): 649-661.
    [15] Einfeldt B, Munz C D, Roe P L. On Godunov-type methods near low densities[J].Journal of Computational Physics,1991,92(2): 273-295.
    [16] Harten A, Lax P D, Van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J].SIAM Review,1983,25(1): 35-61.
    [17] Woodward P, Colella P. The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1): 115-173.
    [18] Kurganov A, Tadmor E. Solution of two-dimensional Riemann problems of gas dynamics without Riemann problem solvers[J].Numerical Methods for Partial Differential Equations,2002,18(5): 584-608.
    [19] 陈建忠. 浅水方程高分辨率有限差分方法研究[D]. 博士学位论文. 西安: 西北工业大学, 2006.(CHEN Jian-zhong. Research on high-resolution finite-difference methods for the shallow water equations[D]. PhD Thesis. Xi’an: Northwestern Polytechnical University, 2006.(in Chinese))
    [20] 胡彦梅, 陈建忠, 封建湖. 双曲型守恒律的一种五阶半离散中心迎风格式[J]. 计算物理, 2008,25(1): 29-35.(HU Yan-mei, CHEN Jian-zhong, FENG Jian-hu. A fifth-order semi-discrete central-upwind scheme for hyperbolic conservation laws[J].Chinese Journal of Computational Physics,2008,25(1): 29-35.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1398
  • HTML全文浏览量:  125
  • PDF下载量:  1460
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-08
  • 修回日期:  2014-04-03
  • 刊出日期:  2014-05-15

目录

    /

    返回文章
    返回