Experimental and Numerical Study of Impingement Heat Transfer in Confined Array Jets
-
摘要: 阵列射流是提高微型通道或狭小空间内传热性能的有效方法.借助试验研究和数值仿真方法,从靶面温度分布、流场信息和全局Nusselt数等角度,探究了射流高度/射流间距(Z/dj=0.60~1.67)这一无量纲参数对多股射流冲击流动传热的影响规律.结果表明:当射流孔数目为奇数时,流体之间的相互作用力越发平衡;当总流量不变时,射流孔数目越少,冷却效果越好;当射流间距较小时,射流会出现明显偏移.随着射流间距的增大,流动结构的对称性逐渐恢复,射流之间的相互作用减弱,受热面温度分布和流体速度分布更加均匀.多股射流的流动传热性能受Z和dj的共同影响,Z/dj对2个和3个射流孔下Nusselt数分布影响差异性较小,其中Z/dj值分别为1.67和1.25时Nusselt数达到峰值.该文的研究结论有助于优化多股射流结构,进一步提升多股射流的换热性能.Abstract: Array jet impingement is an effective method to enhance heat transfer performance in microchannels or confined spaces. The effects of dimensionless parameters of jet height/jet distance (Z/dj=0.60~1.67) on the heat transfer of multi-jet impinging flow were investigated from the perspectives of the target surface temperature distribution, the flow field information and the global Nusselt number by experiment and numerical simulation. The results show that, the interaction force between the fluids becomes more balanced with an odd number of jet holes. At a constant total flow rate, fewer jet holes lead to better cooling performance. The jet has obvious deviation with relatively smaller jet spacings. The symmetry of the flow structure will gradually recover with the increase of the jet spacing, the interaction between jets will weaken, and the temperature distribution on the heating surface and the fluid velocity distribution will become more uniform. The flow and heat transfer performances of multiple jets are jointly affected by Z and dj, and Z/dj has little difference in Nusselt number distributions for 2 and 3 jet holes, where the Nusselt number reaches its peak for Z/dj=1.67 and 1.25, respectively. The findings contribute to optimizing multiple jets' configurations and further enhancing their heat transfer performances.
-
Key words:
- narrow space /
- jet impingement /
- heat transfer enhancement /
- jet height/jet distance /
- Nusselt number
edited-byedited-by1) (我刊青年编委李勇、编委谢公南来稿) -
表 1 研究工况详细信息
Table 1. Details in all study conditions
number of jets the spacing between the jets/mm the height of the jet to the target/mm inlet temperature/K outlet pressure/Pa Z/dj case number 2 6 10 300 101 325 0.60 1 2 6 8 300 101 325 0.75 2 2 8 10 300 101 325 0.80 3 2 6 6 300 101 325 1.00 4 2 8 8 300 101 325 1.00 5 2 10 10 300 101 325 1.00 6 2 10 8 300 101 325 1.25 7 2 8 6 300 101 325 1.33 8 2 10 6 300 101 325 1.67 9 3 6 10 300 101 325 0.60 10 3 6 8 300 101 325 0.75 11 3 8 10 300 101 325 0.80 12 3 6 6 300 101 325 1.00 13 3 8 8 300 101 325 1.00 14 3 10 10 300 101 325 1.00 15 3 10 8 300 101 325 1.25 16 3 8 6 300 101 325 1.33 17 3 10 6 300 101 325 1.67 18 表 2 不同网格数下case 1数值模拟结果
Table 2. Numerical results of case 1 based on different mesh numbers
number of elements temperature and velocity of outlet 1 deviation temperature and velocity of outlet 2 deviation 698 248 323.88 K, 5.585 m/s 0.12%, 0.56% 325.44 K, 5.526 m/s 0.05%, 0.56% 1 968 136 323.94 K, 5.581 m/s 0.10%, 0.48% 325.49 K, 5.531 m/s 0.03%, 0.47% 3 702 816 324.27 K, 5.554 m/s baseline 325.59 K, 5.557 m/s baseline -
[1] 张瑞, 张延胜, 陈冬, 等. 射流倾斜角度对热轧无缝钢管冷却均匀性的影响[J]. 轧钢, 2021, 38(5): 48-53.ZHANG Rui, ZHANG Yansheng, CHEN Dong, et al. Effect of jet tilt angle on cooling uniformity of hot rolled seamless steel pipe[J]. Steel Rolling, 2021, 38(5): 48-53. (in Chinese) [2] 张颖翀, 王川, 陈欣欣, 等. 不同冲击高度下斜向淹没冲击射流的研究分析[J]. 灌溉排水学报, 2020, 39(12): 71-77.ZHANG Yingchong, WANG Chuan, CHEN Xinxin, et al. Operation of oblique submerged jet impingement as impacted by impingement height[J]. Journal of Irrigation and Drainage, 2020, 39(12): 71-77. (in Chinese) [3] 李航, 王宗勇, 刘家栋, 等. 管内中心多股射流轴向间距对传热性能影响的模拟研究[J]. 石油化工, 2022, 51(3): 310-316.LI Hang, WANG Zongyong, LIU Jiadong, et al. Simulation study on the effect of axial distance of multi-jet on heat transfer performance inside tubes[J]. Petrochemical Technology, 2022, 51(3): 310-316. (in Chinese) [4] 禹言芳, 李春晓, 孟辉波, 等. 不同形状喷嘴的射流流动与卷吸特性[J]. 过程工程学报, 2014, 14(4): 549-555.YU Yanfang, LI Chunxiao, MENG Huibo, et al. Flow and entrainment characteristics of jet from different shape nozzles[J]. The Chinese Journal of Process Engineering, 2014, 14(4): 549- 555. (in Chinese) [5] DU S, AL-RASHED A A A A, BARZEGAR GERDROODBARY M, et al. Effect of fuel jet arrangement on the mixing rate inside trapezoidal cavity flame holder at supersonic flow[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22231-22239. doi: 10.1016/j.ijhydene.2019.06.020 [6] 郑杰, 张雅荣, 窦益华, 等. 微尺度阵列射流冲击流动与换热特性研究[J]. 汽轮机技术, 2016, 58(6): 427-430.ZHENG Jie, ZHANG Yarong, DOU Yihua, et al. Study on micro-scale jet array impingement flow and heat transfer characteristics[J]. Turbine Technology, 2016, 58(6): 427-430. (in Chinese) [7] NGUYEN M, BOUSSUGE J F, SAGAUT P, et al. Large eddy simulation of a row of impinging jets with upstream crossflow using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2023, 212: 124256. doi: 10.1016/j.ijheatmasstransfer.2023.124256 [8] 陈晓丹, 刘华飞, 李伟. 多排密集圆孔气体冲击射流换热的实验研究[J]. 工业炉, 2016, 38(2): 19-23.CHEN Xiaodan, LIU Huafei, LI Wei. Experimental investigation of multiply intensive circular air impingement jets heat transfer[J]. Industrial Furnace, 2016, 38(2): 19-23. (in Chinese) [9] 徐惊雷, 徐忠, 张堃元, 等. 冲击高度对自由冲击射流影响的实验研究[J]. 力学与实践, 2002, 24(1): 21-25.XU Jinglei, XU Zhong, ZHANG Kunyuan, et al. Experimental study of the effect of the nozzle-to- plate space on the free turbulent impinging jet flow[J]. Mechanics and Engineering, 2002, 24(1): 21-25. (in Chinese) [10] PAWAR S, PATEL D K. The impingement heat transfer data of inclined jet in cooling applications: a review[J]. Journal of Thermal Science, 2020, 29(1): 1-12. doi: 10.1007/s11630-019-1200-y [11] SHAH S. Numericalanalysis of heat transfer between multiple jets and flat moving surface[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121088. doi: 10.1016/j.ijheatmasstransfer.2021.121088 [12] OTERO-PÉREZ J J, SANDBERG R D, MIZUKAMI S, et al. High-fidelity simulations of multi-jet impingement cooling flows[J]. Journal of Turbomachinery, 2021, 143(8): 081011. doi: 10.1115/1.4050446 [13] 马朝, 严超, 曹学伟, 等. 阵列空气射流传热均匀性问题的数值研究[J]. 工程热物理学报, 2016, 37(11): 2378-2384.MA Zhao, YAN Chao, CAO Xuewei, et al. Numerical study on array air jet heat transfer uniformity[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2378-2384. (in Chinese) [14] 李勇, 张迎春, 付虞, 等. NACA0021和NACA4822翼型肋通道中环境空气流动传热特性的实验研究[J]. 应用数学和力学, 2024, 45(5): 594-605. doi: 10.21656/1000-0887.440331 LI Yong, ZHANG Yingchun, FU Yu, et al. Experimental study on flow and heat transfer characteristics of ambient air in NACA0021and NACA4822 airfoil-fin channels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 594-605. (in Chinese) doi: 10.21656/1000-0887.440331 [15] LI Y, ZHOU Q, ZHANG Y, et al. Insight into jet-regeneration composite cooling technology employed in scramjet: significance of relative positions of two jet holes[J]. International Journal of Heat and Mass Transfer, 2024, 219: 124858. doi: 10.1016/j.ijheatmasstransfer.2023.124858 [16] 石宏岩, 刘捷, 卢文强. 水平紧密接触品字形三圆管自然对流换热的数值模拟[J]. 中国科学院大学学报, 2018, 35(5): 595-601.SHI Hongyan, LIU Jie, LU Wenqiang. Numerical simulation of laminar natural convection heat transfer from three horizontal attached cylinders[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(5): 595-601. (in Chinese) [17] 刘凯, 陈叔平, 赵国锋, 等. 基于流固耦合传热的液氢管道流动特性仿真研究[J]. 真空与低温, 2024: 30(5): 580-588.LIU Kai, CHEN Shuping, ZHAO Guofeng, et al. Simulation study on flow characteristics of liquid hydrogen pipeline based on fluid-solid coupling heat transfer[J]. Vacuum and Cryogenics, 2024, 30(5): 580-588. (in Chinese) -
下载:
渝公网安备50010802005915号