留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

受限式阵列射流冲击传热的试验和数值研究

李勇 张劲 张迎春 张嘉杰 马素霞 谢公南

李勇, 张劲, 张迎春, 张嘉杰, 马素霞, 谢公南. 受限式阵列射流冲击传热的试验和数值研究[J]. 应用数学和力学, 2025, 46(10): 1233-1244. doi: 10.21656/1000-0887.460047
引用本文: 李勇, 张劲, 张迎春, 张嘉杰, 马素霞, 谢公南. 受限式阵列射流冲击传热的试验和数值研究[J]. 应用数学和力学, 2025, 46(10): 1233-1244. doi: 10.21656/1000-0887.460047
LI Yong, ZHANG Jin, ZHANG Yingchun, ZHANG Jiajie, MA Suxia, XIE Gongnan. Experimental and Numerical Study of Impingement Heat Transfer in Confined Array Jets[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1233-1244. doi: 10.21656/1000-0887.460047
Citation: LI Yong, ZHANG Jin, ZHANG Yingchun, ZHANG Jiajie, MA Suxia, XIE Gongnan. Experimental and Numerical Study of Impingement Heat Transfer in Confined Array Jets[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1233-1244. doi: 10.21656/1000-0887.460047

受限式阵列射流冲击传热的试验和数值研究

doi: 10.21656/1000-0887.460047
(我刊青年编委李勇、编委谢公南来稿)
基金项目: 

山西省基础研究计划青年基金 202203021212263

山西省回国留学人员科研资助项目 2023-055

山西省回国留学人员科研资助项目 2023-143

教育部“春晖计划”合作科研项目 202200075

详细信息
    作者简介:

    张劲(2000—),男,硕士生(E-mail: 2023520639@link.tyut.edu.cn)

    通讯作者:

    李勇(1987—),男,讲师,硕士生导师(通讯作者. E-mail: yongli@tyut.edu.cn)

  • 中图分类号: O35

Experimental and Numerical Study of Impingement Heat Transfer in Confined Array Jets

(Contributed by LI Yong, M.AMM Youth Editorial Board & XIE Gongnan, M.AMM Editorial Board)
  • 摘要: 阵列射流是提高微型通道或狭小空间内传热性能的有效方法.借助试验研究和数值仿真方法,从靶面温度分布、流场信息和全局Nusselt数等角度,探究了射流高度/射流间距(Z/dj=0.60~1.67)这一无量纲参数对多股射流冲击流动传热的影响规律.结果表明:当射流孔数目为奇数时,流体之间的相互作用力越发平衡;当总流量不变时,射流孔数目越少,冷却效果越好;当射流间距较小时,射流会出现明显偏移.随着射流间距的增大,流动结构的对称性逐渐恢复,射流之间的相互作用减弱,受热面温度分布和流体速度分布更加均匀.多股射流的流动传热性能受Zdj的共同影响,Z/dj对2个和3个射流孔下Nusselt数分布影响差异性较小,其中Z/dj值分别为1.67和1.25时Nusselt数达到峰值.该文的研究结论有助于优化多股射流结构,进一步提升多股射流的换热性能.
    1)  (我刊青年编委李勇、编委谢公南来稿)
  • 图  1  圆形孔射流冲击的流动结构图

    Figure  1.  The flow structure diagram of the circular hole jet impingement

    图  2  不同射流高度和间距下多股射流冲击几何模型

    Figure  2.  The geometric model of multi-jet impingement at different jet heights and spacings

    图  3  射流孔分布的相对位置

    Figure  3.  The distribution and relative positions of jet holes

    图  4  射流冷却通道的网格划分

    Figure  4.  Grid discretization of the jet cooling channel

    图  5  射流冷却通道试验测试系统原理图

    Figure  5.  Schematic diagram of the experimental test system for the jet cooling channel

    图  6  数值模拟与试验数据的比较

    Figure  6.  Comparison of relevant data between numerical simulation and experiment

    图  7  两股射流下靶面的温度分布

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  7.  Target surface temperature distributions in the condition with 2 jets

    图  8  三股射流下靶面的温度分布

    Figure  8.  Target surface temperature distributions in the condition with 3 jets

    图  9  两股射流的流线和速度分布

    Figure  9.  Streamline and velocity distributions in the condition with 2 jets

    图  10  三股射流的流线和速度分布

    Figure  10.  Streamline and velocity distributions in the condition with 3 jets

    图  11  Re=145 346下加热面沿y轴的Nusselt数分布

    Figure  11.  Nusselt number distributions along the y axis for a heating surface with Re=145 346

    图  12  不同Z/dj下加热面的平均Nusselt数

    Figure  12.  The average Nusselt numbers on the heating surface at various Z/dj values

    表  1  研究工况详细信息

    Table  1.   Details in all study conditions

    number of jets the spacing between the jets/mm the height of the jet to the target/mm inlet temperature/K outlet pressure/Pa Z/dj case number
    2 6 10 300 101 325 0.60 1
    2 6 8 300 101 325 0.75 2
    2 8 10 300 101 325 0.80 3
    2 6 6 300 101 325 1.00 4
    2 8 8 300 101 325 1.00 5
    2 10 10 300 101 325 1.00 6
    2 10 8 300 101 325 1.25 7
    2 8 6 300 101 325 1.33 8
    2 10 6 300 101 325 1.67 9
    3 6 10 300 101 325 0.60 10
    3 6 8 300 101 325 0.75 11
    3 8 10 300 101 325 0.80 12
    3 6 6 300 101 325 1.00 13
    3 8 8 300 101 325 1.00 14
    3 10 10 300 101 325 1.00 15
    3 10 8 300 101 325 1.25 16
    3 8 6 300 101 325 1.33 17
    3 10 6 300 101 325 1.67 18
    下载: 导出CSV

    表  2  不同网格数下case 1数值模拟结果

    Table  2.   Numerical results of case 1 based on different mesh numbers

    number of elements temperature and velocity of outlet 1 deviation temperature and velocity of outlet 2 deviation
    698 248 323.88 K, 5.585 m/s 0.12%, 0.56% 325.44 K, 5.526 m/s 0.05%, 0.56%
    1 968 136 323.94 K, 5.581 m/s 0.10%, 0.48% 325.49 K, 5.531 m/s 0.03%, 0.47%
    3 702 816 324.27 K, 5.554 m/s baseline 325.59 K, 5.557 m/s baseline
    下载: 导出CSV
  • [1] 张瑞, 张延胜, 陈冬, 等. 射流倾斜角度对热轧无缝钢管冷却均匀性的影响[J]. 轧钢, 2021, 38(5): 48-53.

    ZHANG Rui, ZHANG Yansheng, CHEN Dong, et al. Effect of jet tilt angle on cooling uniformity of hot rolled seamless steel pipe[J]. Steel Rolling, 2021, 38(5): 48-53. (in Chinese)
    [2] 张颖翀, 王川, 陈欣欣, 等. 不同冲击高度下斜向淹没冲击射流的研究分析[J]. 灌溉排水学报, 2020, 39(12): 71-77.

    ZHANG Yingchong, WANG Chuan, CHEN Xinxin, et al. Operation of oblique submerged jet impingement as impacted by impingement height[J]. Journal of Irrigation and Drainage, 2020, 39(12): 71-77. (in Chinese)
    [3] 李航, 王宗勇, 刘家栋, 等. 管内中心多股射流轴向间距对传热性能影响的模拟研究[J]. 石油化工, 2022, 51(3): 310-316.

    LI Hang, WANG Zongyong, LIU Jiadong, et al. Simulation study on the effect of axial distance of multi-jet on heat transfer performance inside tubes[J]. Petrochemical Technology, 2022, 51(3): 310-316. (in Chinese)
    [4] 禹言芳, 李春晓, 孟辉波, 等. 不同形状喷嘴的射流流动与卷吸特性[J]. 过程工程学报, 2014, 14(4): 549-555.

    YU Yanfang, LI Chunxiao, MENG Huibo, et al. Flow and entrainment characteristics of jet from different shape nozzles[J]. The Chinese Journal of Process Engineering, 2014, 14(4): 549- 555. (in Chinese)
    [5] DU S, AL-RASHED A A A A, BARZEGAR GERDROODBARY M, et al. Effect of fuel jet arrangement on the mixing rate inside trapezoidal cavity flame holder at supersonic flow[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22231-22239. doi: 10.1016/j.ijhydene.2019.06.020
    [6] 郑杰, 张雅荣, 窦益华, 等. 微尺度阵列射流冲击流动与换热特性研究[J]. 汽轮机技术, 2016, 58(6): 427-430.

    ZHENG Jie, ZHANG Yarong, DOU Yihua, et al. Study on micro-scale jet array impingement flow and heat transfer characteristics[J]. Turbine Technology, 2016, 58(6): 427-430. (in Chinese)
    [7] NGUYEN M, BOUSSUGE J F, SAGAUT P, et al. Large eddy simulation of a row of impinging jets with upstream crossflow using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2023, 212: 124256. doi: 10.1016/j.ijheatmasstransfer.2023.124256
    [8] 陈晓丹, 刘华飞, 李伟. 多排密集圆孔气体冲击射流换热的实验研究[J]. 工业炉, 2016, 38(2): 19-23.

    CHEN Xiaodan, LIU Huafei, LI Wei. Experimental investigation of multiply intensive circular air impingement jets heat transfer[J]. Industrial Furnace, 2016, 38(2): 19-23. (in Chinese)
    [9] 徐惊雷, 徐忠, 张堃元, 等. 冲击高度对自由冲击射流影响的实验研究[J]. 力学与实践, 2002, 24(1): 21-25.

    XU Jinglei, XU Zhong, ZHANG Kunyuan, et al. Experimental study of the effect of the nozzle-to- plate space on the free turbulent impinging jet flow[J]. Mechanics and Engineering, 2002, 24(1): 21-25. (in Chinese)
    [10] PAWAR S, PATEL D K. The impingement heat transfer data of inclined jet in cooling applications: a review[J]. Journal of Thermal Science, 2020, 29(1): 1-12. doi: 10.1007/s11630-019-1200-y
    [11] SHAH S. Numericalanalysis of heat transfer between multiple jets and flat moving surface[J]. International Journal of Heat and Mass Transfer, 2021, 171: 121088. doi: 10.1016/j.ijheatmasstransfer.2021.121088
    [12] OTERO-PÉREZ J J, SANDBERG R D, MIZUKAMI S, et al. High-fidelity simulations of multi-jet impingement cooling flows[J]. Journal of Turbomachinery, 2021, 143(8): 081011. doi: 10.1115/1.4050446
    [13] 马朝, 严超, 曹学伟, 等. 阵列空气射流传热均匀性问题的数值研究[J]. 工程热物理学报, 2016, 37(11): 2378-2384.

    MA Zhao, YAN Chao, CAO Xuewei, et al. Numerical study on array air jet heat transfer uniformity[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2378-2384. (in Chinese)
    [14] 李勇, 张迎春, 付虞, 等. NACA0021和NACA4822翼型肋通道中环境空气流动传热特性的实验研究[J]. 应用数学和力学, 2024, 45(5): 594-605. doi: 10.21656/1000-0887.440331

    LI Yong, ZHANG Yingchun, FU Yu, et al. Experimental study on flow and heat transfer characteristics of ambient air in NACA0021and NACA4822 airfoil-fin channels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 594-605. (in Chinese) doi: 10.21656/1000-0887.440331
    [15] LI Y, ZHOU Q, ZHANG Y, et al. Insight into jet-regeneration composite cooling technology employed in scramjet: significance of relative positions of two jet holes[J]. International Journal of Heat and Mass Transfer, 2024, 219: 124858. doi: 10.1016/j.ijheatmasstransfer.2023.124858
    [16] 石宏岩, 刘捷, 卢文强. 水平紧密接触品字形三圆管自然对流换热的数值模拟[J]. 中国科学院大学学报, 2018, 35(5): 595-601.

    SHI Hongyan, LIU Jie, LU Wenqiang. Numerical simulation of laminar natural convection heat transfer from three horizontal attached cylinders[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(5): 595-601. (in Chinese)
    [17] 刘凯, 陈叔平, 赵国锋, 等. 基于流固耦合传热的液氢管道流动特性仿真研究[J]. 真空与低温, 2024: 30(5): 580-588.

    LIU Kai, CHEN Shuping, ZHAO Guofeng, et al. Simulation study on flow characteristics of liquid hydrogen pipeline based on fluid-solid coupling heat transfer[J]. Vacuum and Cryogenics, 2024, 30(5): 580-588. (in Chinese)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  23
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-11
  • 修回日期:  2025-04-10
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回