留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性电子器件元件阵列的热脉冲响应分析

卞纯燕 杨文成 缪馥星

卞纯燕, 杨文成, 缪馥星. 柔性电子器件元件阵列的热脉冲响应分析[J]. 应用数学和力学, 2025, 46(5): 676-686. doi: 10.21656/1000-0887.460035
引用本文: 卞纯燕, 杨文成, 缪馥星. 柔性电子器件元件阵列的热脉冲响应分析[J]. 应用数学和力学, 2025, 46(5): 676-686. doi: 10.21656/1000-0887.460035
BIAN Chunyan, YANG Wencheng, MIAO Fuxing. Thermal Impulse Response Analysis of Element Arrays in Flexible Electronic Devices[J]. Applied Mathematics and Mechanics, 2025, 46(5): 676-686. doi: 10.21656/1000-0887.460035
Citation: BIAN Chunyan, YANG Wencheng, MIAO Fuxing. Thermal Impulse Response Analysis of Element Arrays in Flexible Electronic Devices[J]. Applied Mathematics and Mechanics, 2025, 46(5): 676-686. doi: 10.21656/1000-0887.460035

柔性电子器件元件阵列的热脉冲响应分析

doi: 10.21656/1000-0887.460035
基金项目: 

国家自然科学基金 11572161

国家自然科学基金 11872218

浙江省自然科学基金重点项目 LZ23A020001

详细信息
    作者简介:

    卞纯燕(1997—),女,硕士生(E-mail: 2211090002@nbu.edu.cn)

    通讯作者:

    缪馥星(1980—),女,教授(通讯作者. E-mail: miaofuxing@nbu.edu.cn)

  • 中图分类号: O347.1

Thermal Impulse Response Analysis of Element Arrays in Flexible Electronic Devices

  • 摘要: 柔性电子器件在工作时产生的热量,导致元件发生变形,极易影响其功能性. 本研究建立了柔性电子器件元件阵列热脉冲响应的有限元分析模型,探讨了柔性电子器件元件封装层与基底层的层厚比对整体结构热稳定性的影响,以及柔性电子器件元件的热脉冲响应. 初步得到:当热脉冲载荷从50 W/m2增大至150 W/m2时,功能层中心单元温度上升约0.47%,热应力增大约25.87%;若封装层与基底层的层厚比从0.2增大到5.0,功能层中心单元的热应力降低约92%,热应变降低约99%,沿层厚方向的位移降低约86%. 初步结果可为柔性电子器件元件热脉冲载荷的优化设计和防护提供基础数据.
  • 图  1  柔性电子器件元件示意图

    Figure  1.  Diagram of flexible electronic components

    图  2  柔性电子器件元件有限元网格

    Figure  2.  Finite element grid diagram of flexible electronic components

    图  3  热脉冲载荷历程

    Figure  3.  The thermal impulse loading history

    图  4  本文热力耦合有限元模型的能量响应

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Energy responses of the presented finite element model

    图  5  不同单元数下元件功能层中心单元热应力响应

    Figure  5.  Thermal stress responses of the central element in the functional layer with different numbers of elements

    图  6  不同热脉冲载荷下柔性电子器件元件各层的温度场

    Figure  6.  Temperature fields in various layers of flexible electronic device elements under different thermal impulse loads

    图  7  不同热脉冲载荷下元件功能层中心单元的热通量和温度响应

    Figure  7.  Heat flux and temperature responses of the central element of the functional layer under different thermal impulse loads

    图  8  n=3工况下,热力耦合模型的热应力分布图

    Figure  8.  Thermal stress distributions with the thermal coupling model in the case of n=3

    图  9  n=3工况下,热力耦合模型沿层厚方向的位移分布

    Figure  9.  Distributions of thickness direction displacements with the thermal coupling model in the case of n=3

    图  10  功能层中心单元温度随不同层厚比的变化曲线

    Figure  10.  The variation curve of the temperature of the functional layer central element with different thickness ratios

    图  11  功能层中心单元的热应力、热应变、沿层厚方向的位移随不同层厚比的变化曲线

    Figure  11.  Variation curves of the functional layer central element with different thickness ratios

    图  12  功能层中心单元温度的有限元结果与文献[30]结果的比较

    Figure  12.  Comparison of the finite element results of the temperature of the functional layer central element with the results of ref. [30]

    表  1  材料属性

    Table  1.   Material properties

    material elastic modulus /GPa Poisson’s ratio density /(kg·m-3) coefficient of thermal expansion /℃-1 conductivity /(W·m-1·℃-1) heat capacity /(J·℃-1)
    SU-8 2 0.17 1 200 5.20×10-5 0.2 1.20×109
    Si 130 0.28 2 330 2.60×10-6 160 7.00×108
    Cu 110 0.34 8 960 1.67×10-5 401 3.84×108
    PDMS 0.002 0.49 965 3.10×10-4 0.17 1.46×109
    下载: 导出CSV

    表  2  柔性电子器件元件的几何参数

    Table  2.   Geometric parameters of flexible electronic device components

    parameter a b hSU-8 hPDMS aSi bSi hSi l RCu hCu bCu
    value /mm 25 25 0.5 2.5 2.5 2.5 0.5 5 1 0.05 0.5
    下载: 导出CSV

    表  3  超弹性材料参数

    Table  3.   Hyperelastic material parameters

    material C10/Pa C01/Pa d/Pa-1
    SU-8[19] 6.757 00×104 -1.689 00×104 4.800 00×105
    PDMS[20] 1.288 68×107 -3.126 97×106 2.062 96×10-9
    下载: 导出CSV

    表  4  本文热力耦合有限元模型的不同单元数算例

    Table  4.   Cases of different meshes for the presented thermally coupled finite element model

    example SU-8 Si Cu PDMS total
    mesh 1 38 400 400 1 588 38 400 99 456
    mesh 2 44 800 400 1 588 44 800 112 256
    mesh 3 64 800 720 1 921 64 800 159 132
    mesh 4 80 000 720 1 921 80 000 189 532
    下载: 导出CSV

    表  5  封装层与基底层不同层厚比下的算例

    Table  5.   The cases with different thickness ratios of the encapsulation layer to the substrate layer

    example hSU-8/mm hSi/mm hPDMS/mm η
    type 1 0.5 0.5 2.5 0.2
    type 2 1.0 0.5 2.0 0.5
    type 3 1.5 0.5 1.5 1.0
    type 4 2.0 0.5 1.0 2.0
    type 5 2.5 0.5 0.5 5.0
    下载: 导出CSV
  • [1] 李学通, 仝洪月, 赵越, 等. 柔性电子器件的应用、结构、力学及展望[J]. 力学与实践, 2015, 37 (3): 295-301.

    LI Xuetong, TONG Hongyue, ZHAO Yue, et al. Structures, mechanical properties and applications of flexible electronic components[J]. Mechanics in Engineering, 2015, 37 (3): 295-301. (in Chinese)
    [2] 蔡依晨, 黄维, 董晓臣. 可穿戴式柔性电子应变传感器[J]. 科学通报, 2017, 62 (7): 635-649.

    CAI Yichen, HUANG Wei, DONG Xiaochen. Wearable and flexible electronic strain sensor[J]. Chinese Science Bulletin, 2017, 62 (7): 635-649. (in Chinese)
    [3] KHANG D Y, JIANG H, HUANG Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates[J]. Science, 2006, 311 (5758): 208-212. doi: 10.1126/science.1121401
    [4] 许巍, 卢天健. 柔性电子系统及其力学性能[J]. 力学进展, 2008, 38 (2): 137-150.

    XU Wei, LU Tianjian. Flexible electronics system and their mechanical properties[J]. Advances in Mechanics, 2008, 38 (2): 137-150. (in Chinese)
    [5] KO H C, STOYKOVICH M P, SONG J, et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics[J]. Nature, 2008, 454 (7205): 748-753. doi: 10.1038/nature07113
    [6] LV C F, LI M, XIAO J L, et al. Mechanics of tunable hemispherical electronic eye camera systems that combine rigid device elements with soft elastomers[J]. Journal of Applied Mechanics, 2013, 80 (6): 061022. doi: 10.1115/1.4023962
    [7] TRUNG T Q, LEE N E. Recent progress on stretchable electronic devices with intrinsically stretchable components[J]. Advanced Materials, 2017, 29 (3): 1603167. doi: 10.1002/adma.201603167
    [8] ZHOU J C, GUO X H, XU Z S, et al. Highly sensitive and stretchable strain sensors based on serpentine-shaped composite films for flexible electronic skin applications[J]. Composites Science and Technology, 2020, 197 : 108215. doi: 10.1016/j.compscitech.2020.108215
    [9] KIM H S, BRUECKNER E, SONG J Z, et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108 (25): 10072-10077.
    [10] DE LIMA JR M M, LACERDA R G, VILCARROMERO J, et al. Coefficient of thermal expansion and elastic modulus of thin films[J]. Journal of Applied Physics, 1999, 86 (9): 4936-4942. doi: 10.1063/1.371463
    [11] GLESKOVA H, CHENG I C, WAGNER S, et al. Thermomechanical criteria for overlay alignment in flexible thin-film electronic circuits[J]. Applied Physics Letters, 2006, 88 (1): 011905. doi: 10.1063/1.2161391
    [12] TORUN H, UREY H. Thermal deflections in multilayer microstructures and athermalization[J]. Journal of Applied Physics, 2006, 100 (2): 023527. doi: 10.1063/1.2216789
    [13] 牛利刚, 杨道国, 李功科. 晶圆尺寸级封装器件的热应力及翘曲变形[J]. 电子元件与材料, 2009, 28 (11): 48-51.

    NIU Ligang, YANG Daoguo, LI Gongke. Research on the thermal stress and warpage of WLCSP device[J]. Electronic Components and Materials, 2009, 28 (11): 48-51. (in Chinese)
    [14] HUANG Y A, YIN Z P, XIONG Y L. Thermomechanical analysis of film-on-substrate system with temperature-dependent properties[J]. Journal of Applied Mechanics, 2010, 77 (4): 041016.
    [15] ZHANG J P, LI Y H, XING Y F, et al. Three-dimensional thermomechanical analysis of epidermal electronic devices on human skin[J]. International Journal of Solids and Structures, 2019, 167 : 48-57.
    [16] SHI Y Y, XU J Q, LI Y, et al. Theoretical model of thermal stress in the film-substrate system of optical thin film[J]. Journal of Electronic Materials, 2022, 51 (10): 5937-5945.
    [17] GAO J, XU Z P, HAN R Y, et al. Refinement of hyperelastic models based on tension and compression experiments of polydimethylsiloxane (PDMS)[J]. Mechanics of Solids, 2024, 59 (2): 955-965.
    [18] MAZURKIEWICZ D. Problems of numerical simulation of stress and strain in the area of the adhesive-bonded joint of a conveyor belt[J]. Archives of Civil and Mechanical Engineering, 2009, 9 (2): 75-91.
    [19] HUMOOD M, SHI Y, HAN M D, et al. Fabrication and deformation of 3D multilayered kirigami microstructures[J]. Small, 2018, 14 (11): e1703852.
    [20] JOHNSTON I D, MCCLUSKEY D K, TAN C K L, et al. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering[J]. Journal of Micromechanics and Microengineering, 2014, 24 (3): 035017.
    [21] 吴林志, 殷莎, 马力. 复合材料点阵夹芯结构的耦合换热及热应力分析[J]. 功能材料, 2010, 41 (6): 969-972.

    WU Linzhi, YIN Sha, MA Li. Coupled heat transfer and thermal stress analysis of composite lattice core sandwich structure[J]. Journal of Functional Materials, 2010, 41 (6): 969-972. (in Chinese)
    [22] 梁艳苹, 苏小卒. 有力筋块体自由摇摆振动恢复系数有限元分析[J]. 土木工程, 2018, 7 (5): 725-733.

    LIANG Yanping, SU Xiaochu. FEM analysis of restitution coefficient of free rocking block with tendon[J]. Hans Journal of Civil Engineering, 2018, 7 (5): 725-733. (in Chinese)
    [23] GUVEN I, MADENCI E. Transient heat conduction analysis in a piecewise homogeneous domain by a coupled boundary and finite element method[J]. International Journal for Numerical Methods in Engineering, 2003, 56 (3): 351-380.
    [24] YIN Y F, LI Y H, LI M. Thermal analysis of the flexible electronics affixed on large curvature myocardium surface[J]. International Journal of Heat and Mass Transfer, 2020, 147 : 118983.
    [25] XU K C, LU Y Y, YAMAGUCHI T, et al. Highly precise multifunctional thermal management-based flexible sensing sheets[J]. ACS Nano, 2019, 13 (12): 14348-14356.
    [26] 苏梅英, 陆原, 万里兮, 等. 基于三维多芯片柔性封装的热应力分析[J]. 现代电子技术, 2015, 38 (3): 141-143.

    SU Meiying, LU Yuan, WAN Lixi, et al. Analysis of thermal stress for 3-D multichip flexible encapsulation[J]. Modern Electronics Technique, 2015, 38 (3): 141-143. (in Chinese)
    [27] TRIPATHY K, BHATTACHARJEE M. Stretching mode deformation analysis for an elastomeric encapsulation-assisted stable flexible electronic substrate[J]. Flexible and Printed Electronics, 2023, 8 (2): 025002.
    [28] YANG Y Q, WINKLER A, KARIMZADEH A. A practical approach for determination of thermal stress and temperature-dependent material properties in multilayered thin films[J]. ACS Applied Materials & Interfaces, 2024, 16 (24): 31729-31737.
    [29] HUANG J, ZHANG Y, FAN A, et al. Remarkable thermal conductivity reduction of silicon nanowires during the bending process[J]. ACS Applied Materials & Interfaces, 2023, 15 (33): 39689-39696.
    [30] CUI Y, LI Y H, XING Y F, et al. One-dimensional thermal analysis of the flexible electronic devices integrated with human skin[J]. Micromachines, 2016, 7 (11): 210.
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  16
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-27
  • 修回日期:  2025-04-14
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回