留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速冲击载荷下考虑乘员安全的均质梁动态响应

张杜江 赵振宇 张智扬 高辉遥 卢天健

张杜江, 赵振宇, 张智扬, 高辉遥, 卢天健. 高速冲击载荷下考虑乘员安全的均质梁动态响应[J]. 应用数学和力学, 2025, 46(3): 271-282. doi: 10.21656/1000-0887.450325
引用本文: 张杜江, 赵振宇, 张智扬, 高辉遥, 卢天健. 高速冲击载荷下考虑乘员安全的均质梁动态响应[J]. 应用数学和力学, 2025, 46(3): 271-282. doi: 10.21656/1000-0887.450325
ZHANG Dujiang, ZHAO Zhenyu, ZHANG Zhiyang, GAO Huiyao, LU Tianjian. Dynamic Responses of a Monolithic Beam Subjected to High-Velocity Impact Loading, With Occupant Safety Considered[J]. Applied Mathematics and Mechanics, 2025, 46(3): 271-282. doi: 10.21656/1000-0887.450325
Citation: ZHANG Dujiang, ZHAO Zhenyu, ZHANG Zhiyang, GAO Huiyao, LU Tianjian. Dynamic Responses of a Monolithic Beam Subjected to High-Velocity Impact Loading, With Occupant Safety Considered[J]. Applied Mathematics and Mechanics, 2025, 46(3): 271-282. doi: 10.21656/1000-0887.450325

高速冲击载荷下考虑乘员安全的均质梁动态响应

doi: 10.21656/1000-0887.450325
基金项目: 

国家自然科学基金 11972185

国家自然科学基金 12002156

详细信息
    作者简介:

    张杜江(1995—),男,工程师,博士(E-mail: djzhang@nuaa.edu.cn)

    通讯作者:

    卢天健(1964—),男,教授,博士,博士生导师(通讯作者. E-mail: tjlu@nuaa.edu.cn)

  • 中图分类号: O347.1

Dynamic Responses of a Monolithic Beam Subjected to High-Velocity Impact Loading, With Occupant Safety Considered

  • 摘要: 为了提升装甲车防护结构抗爆性能,保障乘员生命安全,开展了高速冲击载荷下考虑乘员安全的均质梁动态响应研究.首先,基于泡沫铝弹丸冲击均质梁-弹簧-质量块样件实验工装,测量了不同冲击速度下的质量块位移随时间变化曲线;然后,建立了相应的数值模型进行仿真计算,并开展理论计算,当泡沫铝弹丸速度较高时,仿真、实验与理论结果吻合较好;最后,基于验证的数值仿真方法,系统讨论了泡沫铝弹丸冲击速度、质量块质量、弹簧刚度和阻尼系数对质量块峰值位移、峰值加速度的影响.结果表明:随着泡沫铝弹丸速度增大,质量块峰值位移、峰值加速度都增大;质量块峰值位移对质量块质量、弹簧刚度变化不敏感;质量块峰值加速度随其质量增加而降低,随弹簧刚度、阻尼系数增加而增加.研究结果验证了理论和仿真方法的正确性,为使用理论、仿真方法快速设计高速冲击载荷下的高性能防护结构提供了支撑.
  • 图  1  泡沫铝弹丸冲击均质梁-质量-弹簧-阻尼系统示意图

    Figure  1.  Schematic of the monolithic beam-mass-spring-damping system subjected to foam projectile impact

    图  2  均质梁-弹簧-质量块样件制备过程示意图

    Figure  2.  Fabrication procedures of the monolithic beam-mass-spring sample

    图  3  一级轻气炮冲击实验设备

    Figure  3.  Schematic of the overall impact testing setup

    图  4  测试舱内的试样及工装夹具

    Figure  4.  Schematic of the beam specimen fixed in the test cabin

    图  5  泡沫铝弹丸工程应力和能量吸收率随工程应变变化曲线

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  5.  Engineering stress and energy absorption efficiency vs. engineering strain curves of the foam projectile

    图  6  有限元模型示意图

    Figure  6.  The finite element model

    图  7  均质梁中点残余挠度、计算时间随网格尺寸变化曲线

    Figure  7.  The midpoint residual deflection of the monolithic beam and the computing time vs. the mesh size

    图  8  浅埋爆炸载荷下均质梁-质量-弹簧-阻尼系统示意图[16]

    Figure  8.  The monolithic beam-mass-spring-damping system subjected to a shallow-buried explosion[16]

    图  9  w1/Lv0变化曲线

    Figure  9.  The w1/L vs. v0 curves

    图  10  均质梁等效塑性应变(v0=75 m/s)

    Figure  10.  The equivalent plastic strains of the monolithic beam for v0=75 m/s

    图  11  w2/Lv0变化曲线

    Figure  11.  The w2/L vs. v0 curves

    图  12  质量块位移-时间变化曲线(v0=95.5 m/s)

    Figure  12.  Displacements of the mass block vs. the time for v0=95.5 m/s

    图  13  t=20 ms时,均质梁的变形图

    Figure  13.  The deformation shape of the monolithic beam for t=20 ms

    图  14  v0m对质量块峰值位移的影响

    Figure  14.  The effects of v0 and m on peak displacements of the mass

    图  15  v0m对质量块峰值加速度的影响

    Figure  15.  The effects of v0 and m on peak accelerations of the mass

    图  16  弹簧刚度k对质量块峰值位移的影响

    Figure  16.  The peak displacements of the mass vs. k

    图  17  弹簧刚度k对质量块峰值加速度的影响

    Figure  17.  The peak accelerations of the mass vs. k

    图  18  阻尼系数c对质量块峰值位移的影响

    Figure  18.  The effects of c on the peak displacement of the mass

    图  19  阻尼系数c对质量块峰值加速度的影响

    Figure  19.  The effects of c on the peak acceleration of the mass

    表  1  J-C本构模型材料参数

    Table  1.   The Johnson-Cook constitutive model parameters

    material E/GPa ν ρ/(kg/m3) A/MPa B/MPa n C m $ \dot{\varepsilon}_0 / \mathrm{s}^{-1}$ Ttr/K TM/K
    304 stainless-steel[33] 193 0.3 7 800 310 1 000 0.65 0.034 1.05 0.001 293 1 800
    下载: 导出CSV

    表  2  实验、仿真、理论结果对比

    Table  2.   Comparison of experimental, simulation and theoretical results

    №. v0/(m/s) w1/mm w2/mm
    experiment simulation theory[16] theory[34] experiment simulation theory[16]
    1 75.0 11.4 9.5 6.1 7.6 11.0 9.5 6.1
    2 95.5 12.8 11.8 9.1 10.2 10.4 11.8 9.1
    3 151.9 20.3 18.9 21.4 21.5 13.8 18.9 21.4
    下载: 导出CSV
  • [1] DEY S, BØRVIK T, HOPPERSTAD O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes[J]. International Journal of Impact Engineering, 2004, 30(8/9): 1005-1038. http://www.sciencedirect.com/science/article/pii/S0734743X04000971
    [2] ZHANG X L, ZHOU Y B, WANG X H, et al. Modelling and analysis of the vehicle underbody and the occupants subjected to a shallow-buried-mine blast impulse[J]. Proceedings of the Institution of Mechanical Engineers (Part D): Journal of Automobile Engineering, 2017, 231(2): 214-224. doi: 10.1177/0954407016651353
    [3] GRUJICIC M, PANDURANGAN B, HUANG Y, et al. Impulse loading resulting from shallow buried explosives in water-saturated sand[J]. Proceedings of the Institution of Mechanical Engineers (Part L): Journal of Materials: Design and Applications, 2007, 221(1): 21-35. doi: 10.1243/14644207JMDA96
    [4] PICKERING E G, YUEN S C K, NURICK G N, et al. The response of quadrangular plates to buried charges[J]. International Journal of Impact Engineering, 2012, 49: 103-114. doi: 10.1016/j.ijimpeng.2012.05.007
    [5] JOHNSON T E, BASUDHAR A. A metamodel-based shape optimization approach for shallow-buried blast-loaded flexible underbody targets[J]. International Journal of Impact Engineering, 2015, 75: 229-240. doi: 10.1016/j.ijimpeng.2014.08.010
    [6] GOEL A, UTH T, WADLEY H N G, et al. Effect of surface properties on momentum transfer to targets impacted by high-velocity sand slugs[J]. International Journal of Impact Engineering, 2017, 103: 90-106. doi: 10.1016/j.ijimpeng.2017.01.001
    [7] KYNER A, DESHPANDE V S, WADLEY H N G. Impulse transfer during granular matter impact with inclined sliding surfaces[J]. International Journal of Impact Engineering, 2019, 130: 79-96. doi: 10.1016/j.ijimpeng.2019.04.003
    [8] RIMOLI J J, TALAMINI B, WETZEL J J, et al. Wet-sand impulse loading of metallic plates and corrugated core sandwich panels[J]. International Journal of Impact Engineering, 2011, 38(10): 837-848. doi: 10.1016/j.ijimpeng.2011.05.010
    [9] ZHANG P, CHENG Y S, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading[J]. Marine Structures, 2015, 40: 225-246. doi: 10.1016/j.marstruc.2014.11.007
    [10] CHENG M, DIONNE J P, MAKRIS A. On drop-tower test methodology for blast mitigation seat evaluation[J]. International Journal of Impact Engineering, 2010, 37(12): 1180-1187. doi: 10.1016/j.ijimpeng.2010.08.002
    [11] ZHOU Y B, ZHANG M, LUO M, et al. Research on drop tower technology for simulating explosive impact load[J]. Journal of Physics: Conference Series, 2021, 1721(1): 012019. doi: 10.1088/1742-6596/1721/1/012019
    [12] DONG Y P, LU Z H. Analysis and evaluation of an anti-shock seat with a multi-stage non-linear suspension for a tactical vehicle under a blast load[J]. Proceedings of the Institution of Mechanical Engineers (Part D): Journal of Automobile Engineering, 2012, 226(8): 1037-1047. doi: 10.1177/0954407011435199
    [13] CONG M, ZHOU Y B, ZHANG M, et al. Design and optimization of multi-V hulls of light armoured vehicles under blast loads[J]. Thin-Walled Structures, 2021, 168: 108311. doi: 10.1016/j.tws.2021.108311
    [14] WEI R, WANG X H, ZHANG M, et al. Application of dimension reduction based multi-parameter optimization for the design of blast-resistant vehicle[J]. Structural and Multidisciplinary Optimization, 2017, 56(4): 903-917. doi: 10.1007/s00158-017-1696-2
    [15] ZHANG D J, ZHAO Z Y, GAO H Y, et al. Dynamic response of sandwich panel attached with a double mass-spring-damping system to shallow-buried explosion: analytical modeling[J]. Science China: Technological Sciences, 2024, 67(2): 568-586. doi: 10.1007/s11431-023-2375-0
    [16] 张杜江, 赵振宇, 褚庆国, 等. 浅埋爆炸下考虑乘员安全的防雷底板设计理论模型[J]. 应用力学学报, 2024, 41(4): 786-796.

    ZHANG Dujiang, ZHAO Zhenyu, CHU Qingguo, et al. Theoretical model of armored vehicle bottom plate subjected to detonation of shallow-buried explosives, with occupant safety considered[J]. Chinese Journal of Applied Mechanics, 2024, 41(4): 786-796. (in Chinese)
    [17] PENG W, ZHANG Z Y, GOGOS G, et al. Interactions between blast waves and V-shaped and cone-shaped structures[J]. AlP Conference Proceedings, 2011, 1376(1): 149-153.
    [18] ZOK F W, WALTNER S A, WEI Z, et al. A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores[J]. International Journal of Solids and Structures, 2004, 41(22/23): 6249-6271. http://www.onacademic.com/detail/journal_1000034075110010_ba26.html
    [19] UTH T, DESHPANDE V S. Response of clamped sandwich beams subjected to high-velocity impact by sand slugs[J]. International Journal of Impact Engineering, 2014, 69: 165-181. doi: 10.1016/j.ijimpeng.2014.02.012
    [20] DHARMASENA K P, WADLEY H N G, LIU T, et al. The dynamic response of edge clamped plates loaded by spherically expanding sand shells[J]. International Journal of Impact Engineering, 2013, 62: 182-195. doi: 10.1016/j.ijimpeng.2013.06.012
    [21] WADLEY H N G, BØRVIK T, OLOVSSON L, et al. Deformation and fracture of impulsively loaded sandwich panels[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 674-699. doi: 10.1016/j.jmps.2012.07.007
    [22] KYNER A, DHARMASENA K, WILLIAMS K, et al. Response of square honeycomb core sandwich panels to granular matter impact[J]. International Journal of Impact Engineering, 2018, 117: 13-31. doi: 10.1016/j.ijimpeng.2018.02.009
    [23] ZHANG D J, ZHAO Z Y, DU S F, et al. Dynamic response of ultralight all-metallic sandwich panel with 3D tube cellular core to shallow-buried explosives[J]. Science China: Technological Sciences, 2021, 64(7): 1371-1388. doi: 10.1007/s11431-020-1774-1
    [24] ZHAO Z Y, ZHANG D J, CHEN W J, et al. An analytical model of blast resistance for all-metallic sandwich panels subjected to shallow-buried explosives[J]. International Journal of Mechanics and Materials in Design, 2022, 18(4): 873-892. doi: 10.1007/s10999-022-09605-w
    [25] YU B, HAN B, NI C Y, et al. Dynamic crushing of all-metallic corrugated panels filled with close-celled aluminum foams[J]. Journal of Applied Mechanics, 2015, 82(1): 011006. doi: 10.1115/1.4028995
    [26] WANG X, YU R P, ZHANG Q C, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores[J]. International Journal of Impact Engineering, 2020, 139: 103533. doi: 10.1016/j.ijimpeng.2020.103533
    [27] YU R P, WANG X, ZHANG Q C, et al. Effects of sand filling on the dynamic response of corrugated core sandwich beams under foam projectile impact[J]. Composites (Part B): Engineering, 2020, 197: 108135. doi: 10.1016/j.compositesb.2020.108135
    [28] LIU T, FLECK N A, WADLEY H N G, et al. The impact of sand slugs against beams and plates: coupled discrete particle/finite element simulations[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(8): 1798-1821. doi: 10.1016/j.jmps.2013.03.008
    [29] 樊召帅, 葛树宏, 岳增申, 等. 侧向强动冲击下冲击位置对薄壁圆柱壳动态响应的影响[J]. 应用数学和力学, 2025, 46(2): 175-186. doi: 10.21656/1000-0887.450074

    FAN Zhaoshuai, GE Shuhong, YUE Zengshen, et al. Effects of impact positions on dynamic responses of thin-walled cylindrical shells under lateral shock loadings[J]. Applied Mathematics and Mechanics, 2025, 46(2): 175-186. (in Chinese) doi: 10.21656/1000-0887.450074
    [30] WILLIAMS K, FILLION-GOURDEAU F. Numerical simulation of light armoured vehicle occupant vulnerability to anti-vehicle mine blast[C]//7th International LS-DYNA Users Conference. 2002: 6-14.
    [31] MILTZ J, RAMON O. Energy absorption characteristics of polymeric foams used as cushioning materials[J]. Polymer Engineering and Science, 1990, 30(2): 129-133. doi: 10.1002/pen.760300210
    [32] 毛君. 机械振动学[M]. 北京: 北京理工大学出版社, 2016.

    MAO Jun. Mechanical Vibration[M]. Beijing: Beijing Insititute of Technology Press, 2016. (in Chinese)
    [33] NAHSHON K, PONTIN M G, EVANS G A, et al. Dynamic shear rupture of steel plates[J]. Journal of Mechanics of Materials and Structures, 2007, 2(10): 2049-2066. doi: 10.2140/jomms.2007.2.2049
    [34] 张元瑞, 朱玉东, 郑志军, 等. 泡沫子弹冲击固支单梁的耦合分析模型[J]. 力学学报, 2022, 54(8): 2161-2172.

    ZHANG Yuanrui, ZHU Yudong, ZHENG Zhijun, et al. A coupling analysis model of clamped monolithic beam impacted by foam projectiles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2161-2172. (in Chinese)
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  24
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-09
  • 修回日期:  2024-12-30
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回