留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑空间拱效应和层间剪力的圆形竖井主动土压力分析

杨帅 吕兵 李东声 刘洋 杨欢

杨帅, 吕兵, 李东声, 刘洋, 杨欢. 考虑空间拱效应和层间剪力的圆形竖井主动土压力分析[J]. 应用数学和力学, 2025, 46(10): 1307-1319. doi: 10.21656/1000-0887.450313
引用本文: 杨帅, 吕兵, 李东声, 刘洋, 杨欢. 考虑空间拱效应和层间剪力的圆形竖井主动土压力分析[J]. 应用数学和力学, 2025, 46(10): 1307-1319. doi: 10.21656/1000-0887.450313
YANG Shuai, LÜ Bing, LI Dongsheng, LIU Yang, YANG Huan. Analysis of Active Earth Pressure on Circular Vertical Shafts Considering Arching Effects and Interlayer Shear Stresses[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1307-1319. doi: 10.21656/1000-0887.450313
Citation: YANG Shuai, LÜ Bing, LI Dongsheng, LIU Yang, YANG Huan. Analysis of Active Earth Pressure on Circular Vertical Shafts Considering Arching Effects and Interlayer Shear Stresses[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1307-1319. doi: 10.21656/1000-0887.450313

考虑空间拱效应和层间剪力的圆形竖井主动土压力分析

doi: 10.21656/1000-0887.450313
基金项目: 

北京市自然科学基金 8222020

详细信息
    作者简介:

    杨帅(1977—),男,高级工程师(E-mail: zjsgjegsys@126.com)

    通讯作者:

    刘洋(1979—),男,教授,博士(通讯作者. E-mail: yangliu@ustb.edu.cn)

  • 中图分类号: TU432

Analysis of Active Earth Pressure on Circular Vertical Shafts Considering Arching Effects and Interlayer Shear Stresses

  • 摘要: 以井壁后填土为无黏性土的圆形竖井为研究对象,假定滑裂面为过墙踵的直线. 考虑环向应力系数沿径向线性变化,基于极限平衡法建立整个滑移土体的静力平衡方程,进而得到圆形竖井主动极限状态下滑裂面倾角的解析式. 在此基础上,考虑空间拱效应和层间剪力的影响,基于水平层分析法推导得到了圆形竖井主动土压力的理论解,进一步分析了竖井主动土压力强度的影响因素,并与现有的理论和试验结果进行了对比分析. 结果显示:土体层间剪力会影响主动土压力强度沿深度方向的分布,且径高比、墙-土摩擦角越大,层间剪力的影响越明显,考虑层间剪力得到的土压力计算值可为竖井结构优化设计提供理论参考. 该文的结果能够很好地描述土压力沿深度先增大后减小的变化趋势,且与模型试验和数值模拟结果吻合较好.
  • 图  1  圆形竖井的分析模型

    Figure  1.  The analysis model for the retaining wall of circular shaft

    图  2  墙后滑移土体受力分析图

    Figure  2.  Force analysis of sliding soil behind the wall

    图  3  径高比r0/H对滑裂面倾角的影响

    Figure  3.  Effects of r0/H on slip surface inclination β

    图  4  主动土压力分析模型图

    Figure  4.  The analytical model for active earth pressure

    图  5  不同径高比r0/H对应的主动土压力分布

    Figure  5.  Variations of the distribution of active earth pressure with r0/H

    图  6  径高比r0/H对作用点高度系数Kh的影响

    Figure  6.  Effects of r0/H on the normalized application height of the lateral active force

    图  7  不同内摩擦角φ对应的主动土压力分布

    Figure  7.  Variations of the distribution of the active earth pressure with φ

    图  8  内摩擦角φ对作用点高度系数Kh的影响

    Figure  8.  Effects of φ on the normalized application height of the lateral active force

    图  9  不同外摩擦角δ对应的主动土压力分布

    Figure  9.  Distributions of the active earth pressure at different values of δ

    图  10  外摩擦角δ对作用点高度系数Kh的影响

    Figure  10.  Effects of δ on the normalized application height of the lateral active force

    图  11  主动土压力计算值与Cho等[29]试验结果对比

    Figure  11.  Comparison of the proposed method and the experimental data of Cho et al[29]

    图  12  主动土压力计算值与Tran等[30]试验结果对比

    Figure  12.  Comparison of the proposed method and the experimental data of Tran et al[30]

  • [1] TSAGARELI Z V. Experimental investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface[J]. Soil Mechanics and Foundation Engineering, 1965, 2(4): 197-200. doi: 10.1007/BF01706095
    [2] O'NEAL T S, HAGERTY D J. Earth pressures in confined cohesionless backfill against tall rigid walls: a case history[J]. Canadian Geotechnical Journal, 2011, 48(8): 1188-1197. doi: 10.1139/t11-033
    [3] TOBAR T, MEGUID M A. Comparative evaluation of methods to determine theearth pressure distribution on cylindrical shafts: a review[J]. Tunnelling and Underground Space Technology, 2010, 25(2): 188-197. doi: 10.1016/j.tust.2009.11.001
    [4] HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318. doi: 10.1061/(ASCE)0733-9410(1985)111:3(302)
    [5] PAIK K H, SALGADO R. Estimation of active earth pressure against rigid retaining walls considering arching effects[J]. Géotechnique, 2003, 53(7): 643-653.
    [6] GOEL S, PATRA N R. Effect of arching on active earth pressure for rigid retaining walls considering translation mode[J]. International Journal of Geomechanics, 2008, 8(2): 123-133. doi: 10.1061/(ASCE)1532-3641(2008)8:2(123)
    [7] 王元战, 唐照评, 郑斌. 墙体绕墙顶转动情况下挡土墙主动土压力分布[J]. 应用数学和力学, 2004, 25(7): 695-700. http://www.applmathmech.cn/article/id/360

    WANG Yuanzhan, TANG Zhaoping, ZHENG Bin. Distribution of active earth pressure of retaining wall with wall movement of rotation about top[J]. Applied Mathematics and Mechanics, 2004, 25(7): 695-700. (in Chinese) http://www.applmathmech.cn/article/id/360
    [8] 马明, 李明东, 郎钞棚, 等. 刚性挡墙绕底转动时的非极限主动土压力数值解[J]. 应用数学和力学, 2022, 43(3): 312-321. doi: 10.21656/1000-0887.420178

    MA Ming, LI Mingdong, LANG Chaopeng, et al. Numerical solutions of the nonlimit-state active earth pressure under backfill wall rotation around the bottom[J]. Applied Mathematics and Mechanics, 2022, 43(3): 312-321. (in Chinese) doi: 10.21656/1000-0887.420178
    [9] 刘洋, 于鹏强. 刚性挡土墙平移模式的土拱形状与主动土压力分析[J]. 岩土力学, 2019, 40(2): 506-516.

    LIU Yang, YU Pengqiang. Analysis of soil arch and active earth pressure on translating rigid retaining walls[J]. Rock and Soil Mechanics, 2019, 40(2): 506-516. (in Chinese)
    [10] 黄睿, 汤金焕. RT模式下地震非极限主动土压力的拟动力分析[J]. 岩土力学, 2020, 41(8): 2564-2572.

    HUANG Rui, TANG Jinhuan. Pseudo-dynamic analysis of seismic non-limit active earth pressure in RT mode[J]. Rock and Soil Mechanics, 2020, 41(8): 2564-2572. (in Chinese)
    [11] 于鹏强, 刘洋, 彭银刚, 等. 考虑填土各向异性的主动土压力计算[J]. 土木工程学报, 2019, 52(S1): 218-225.

    YU Pengqiang, LIU Yang, PENG Yingang, et al. Calculation of active earth pressure for anisotropic sand[J]. China Civil Engineering Journal, 2019, 52(S1): 218-225. (in Chinese)
    [12] YU P, LIU Y. Analysis of active earth pressure behind rigid retaining walls considering curved slip surface[J]. Geotechnical and Geological Engineering, 2024, 42(1): 251-270. doi: 10.1007/s10706-023-02567-6
    [13] TERZAGHI K. Theoretical Soil Mechanics[M]. New York: John Wiley & Sons, 1943.
    [14] 马英明. 立井厚表土层地压的理论与实践[J]. 中国矿业学院学报, 1979(1): 48-72.

    MA Yingming. Theory and practice of ground pressure on shaft due to thick overburden[J]. Journal of China University of Mining & Technology, 1979(1): 48-72. (in Chinese)
    [15] FUJII T, HAGIWARA T, KUSAKABE O. Active failure mechanism of a deep circular shaft in dry sand[C]//Geotechnical Aspects of Underground Construction in Soft Ground, 1996: 137-142.
    [16] BEREZANTZEV V G. Earth pressure on the cylindrical retaining walls[C]//Brussels Conference on Earth Pressure Problems Ⅱ, 1958: 21-27.
    [17] PRATER E G. An examination of some theories of earth pressure on shaft linings[J]. Canadian Geotechnical Journal, 1977, 14(1): 91-106. doi: 10.1139/t77-007
    [18] 崔广心. 深厚表土中竖井井壁的外载[J]. 岩土工程学报, 2003, 25(3): 294-298.

    CUI Guangxin. Loading of shaft lining for deep alluviam[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 294-298. (in Chinese)
    [19] CHENG Y M, HU Y Y, WEI W B. General axisymmetric active earth pressure by method of characteristics: theory and numerical formulation[J]. International Journal of Geomechanics, 2007, 7(1): 1-15. doi: 10.1061/(ASCE)1532-3641(2007)7:1(1)
    [20] 陈国舟, 周国庆. 考虑空间拱效应的筒形墙体主动土压力[J]. 江苏大学学报(自然科学版), 2015, 36(1): 108-113.

    CHEN Guozhou, ZHOU Guoqing. Active earth pressure on cylindrical wall with consideration of soil arching effects[J]. Journal of Jiangsu University (Natural Science Edition), 2015, 36(1): 108-113. (in Chinese)
    [21] LU K, ZHOU G, YANG Y, et al. Active earth pressure on a cylindrical retaining wall with considering the spatial arching effect[J]. Arabian Journal of Geosciences, 2022, 15(14): 1274. doi: 10.1007/s12517-022-10569-6
    [22] LIU F Q, WANG J H. A generalized slip line solution to the active earth pressure on circular retaining walls[J]. Computers and Geotechnics, 2008, 35(2): 155-164. doi: 10.1016/j.compgeo.2007.06.002
    [23] 刘发前, 王建华. 圆形基坑主动土压力的理论研究[J]. 岩土工程学报, 2008, 30(S1): 5-8.

    LIU Faqian, WANG Jianhua. Theoretical study on active earth pressure of circular foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(S1): 5-8. (in Chinese)
    [24] 陈国舟. 基于颗粒流的筒形挡土墙土压力研究[J]. 土工基础, 2014, 28(1): 94-97.

    CHEN Guozhou. Application of particle flow code in earth pressures against a cylindrical wall[J]. Soil Engineering and Foundation, 2014, 28(1): 94-97. (in Chinese)
    [25] 熊国军. 基于严密条件的轴对称极限平衡理论及其在土压力计算中的应用[D]. 上海: 上海交通大学, 2019.

    XIONG Guojun. Limit equilibrium theory of axisymmetric based on rigorous conditions and its application in calculation of earth pressure[D]. Shanghai: Shanghai Jiao Tong University, 2019. (in Chinese)
    [26] XIONG G J, WANG J H, CHEN J J. Theory and practical calculation method for axisymmetric active earth pressure based on the characteristics method considering the compatibility condition[J]. Applied Mathematical Modelling, 2019, 68: 563-582. doi: 10.1016/j.apm.2018.11.022
    [27] 闫澍旺, 李嘉, 闫玥, 等. 轴对称主动土压力问题的滑移线解[J]. 岩土力学, 2018, 39(11): 4133-4141.

    YAN Shuwang, LI Jia, YAN Yue, et al. A solution for axisymmetric active earth pressure by slip line method[J]. Rock and Soil Mechanics, 2018, 39(11): 4133-4141. (in Chinese)
    [28] 刘忠玉, 陈捷. 平动模式下考虑剪应力作用的刚性挡土墙主动土压力计算[J]. 岩土工程学报, 2016, 38(12): 2254-2261.

    LIU Zhongyu, CHEN Jie. Active earth pressure against rigid retaining wall considering shear stress under translation mode[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2254-2261. (in Chinese)
    [29] CHO J, LIM H, JEONG S, et al. Analysis of lateral earth pressure on a vertical circular shaft considering the 3D arching effect[J]. Tunnelling and Underground Space Technology, 2015, 48: 11-19. doi: 10.1016/j.tust.2015.01.002
    [30] TRAN V D H, MEGUID M A, CHOUINARD L E. Discrete element and experimental investigations of the Earth pressure distribution on cylindrical shafts[J]. International Journal of Geomechanics, 2014, 14(1): 80-91. doi: 10.1061/(ASCE)GM.1943-5622.0000277
  • 加载中
图(12)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  29
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18
  • 修回日期:  2024-12-23
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回