留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢纤维混凝土冲击破坏特性GDEM软件模拟

张金 戚志刚 张磊

张金, 戚志刚, 张磊. 钢纤维混凝土冲击破坏特性GDEM软件模拟[J]. 应用数学和力学, 2025, 46(5): 621-632. doi: 10.21656/1000-0887.450311
引用本文: 张金, 戚志刚, 张磊. 钢纤维混凝土冲击破坏特性GDEM软件模拟[J]. 应用数学和力学, 2025, 46(5): 621-632. doi: 10.21656/1000-0887.450311
ZHANG Jin, QI Zhigang, ZHANG Lei. Impact Damage Characteristics Simulation of Steel Fiber Reinforced Concrete With the GDEM Software[J]. Applied Mathematics and Mechanics, 2025, 46(5): 621-632. doi: 10.21656/1000-0887.450311
Citation: ZHANG Jin, QI Zhigang, ZHANG Lei. Impact Damage Characteristics Simulation of Steel Fiber Reinforced Concrete With the GDEM Software[J]. Applied Mathematics and Mechanics, 2025, 46(5): 621-632. doi: 10.21656/1000-0887.450311

钢纤维混凝土冲击破坏特性GDEM软件模拟

doi: 10.21656/1000-0887.450311
基金项目: 

国家自然科学基金 12172381

中原领军人才项目 234200510016

详细信息
    作者简介:

    张金(1996—),男,博士生(E-mail: 2743008270@qq.com)

    通讯作者:

    张磊(1974—),男,研究员,博士(通讯作者. E-mail: ustczhanglei@163.com)

  • 中图分类号: O331

Impact Damage Characteristics Simulation of Steel Fiber Reinforced Concrete With the GDEM Software

  • 摘要: 钢纤维混凝土(steel fiber reinforced concrete,SFRC)是防护工程中最常用的结构材料,在爆炸、侵彻等强动载作用下,其往往处于高应变率的复杂应力状态. 目前,关于SFRC的动态力学性能的研究大多局限于一维应力和一维应变加载条件下,而关于三向应力状态下的冲击压缩特性研究较少. 该文采用基于连续-非连续介质力学的数值仿真软件GDEM-BlockDyna,模拟了围压对SFRC动态力学性能和破坏模式的影响. 结果表明:围压下SFRC的峰值应力和峰值应变均随着应变率的提高有不同程度的增大,但围压会抑制SFRC冲击压缩强度的率效应. GDEM能较逼真地模拟应变率和围压对材料动态力学的影响,与有限元方法相比,GDEM能够更好地模拟SFRC从完整到破坏的过程及特征,且对SFRC峰值应力后的破坏阶段的描述模拟更加准确.
  • 图  1  CDEM中数值模型的构成[22]

    Figure  1.  Composition of numerical models in the CDEM[22]

    图  2  模拟计算两阶段

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Two phases of simulation

    图  3  SFRC动态单轴压缩损伤云图

    Figure  3.  Dynamic uniaxial compression damage contours for SFRC

    图  4  C60-SFRC单轴冲击破坏模拟损伤结果云图与文献结果[24]

    Figure  4.  SFRC uniaxial impact damage simulation damage result contours and experimental results[24]

    图  5  围压下SFRC损伤云图

    Figure  5.  SFRC damage contours under circumferential pressure

    图  6  入射波-透射波波形和应力平衡

    Figure  6.  Incident-transmitted waveforms and stress balance diagrams

    图  7  围压下典型的SFRC应力-应变曲线

    Figure  7.  Typical SFRC stress-strain curves under circumferential pressure

    图  8  不同围压下应变率对C15-SFRC应力-应变曲线影响规律

    Figure  8.  Influences of strain rates on stress-strain curves of C15-SFRC under different confining pressures

    图  9  不同围压下应变率对C80-SFRC应力-应变曲线影响规律

    Figure  9.  Influences of strain rates on stress-strain curves of C80-SFRC under different confining pressures

    图  10  三种围压下$\operatorname{SFRC} \lg \left(\xi_{\text {DIF }}\right)-\lg \left(\dot{\varepsilon} / \varepsilon_{\mathrm{s}}\right)$ 拟合曲线

    Figure  10.  SFRC $\lg \left(\xi_{\text {DIF }}\right)-\lg \left(\dot{\varepsilon} / \varepsilon_{\mathrm{s}}\right)$ fitting curves under 3 types of confining pressures

    图  11  三种围压下$\lg \left(\xi_{\text {DIF }}\right)-\lg \left(\dot{\varepsilon} / \varepsilon_{\mathrm{s}}\right)$ 拟合曲线

    Figure  11.  Fitted curves of $\lg \left(\xi_{\text {DIF }}\right)-\lg \left(\dot{\varepsilon} / \varepsilon_{\mathrm{s}}\right)$ at 3 confining pressures

    图  12  有限元结果与GDEM模拟结果对比

    Figure  12.  Comparison between finite element results and GDEM simulation results

    图  13  C60-SFRC实验结果、有限元结果、GDEM软件数值仿真结果对比

    Figure  13.  Comparison of C60-SFRC experimental results, finite element results and GDEM software numerical results

    表  1  SFRC基本力学参数

    Table  1.   Basic mechanical parameters of specimens

    serial number density/(g·cm-3) elastic modulus/GPa Poisson’s ratio cohesion/MPa tensile strength/MPa internal friction angle/(°) swelling angle/(°)
    C15 2 480 21.8 0.23 10 1.57 36.5 0
    C30 2 500 38 0.21 27 4.19 37.4 0
    C60 2 636 44 0.20 32 5.49 37.9 0
    C80 2 645 48 0.19 45 8.34 38.9 0
    下载: 导出CSV

    表  2  SFRC-HJC参数

    Table  2.   Steel fiber reinforced concrete HJC parameters

    serial number ρ G/Pa A B C N fc/Pa T/Pa EFMIN Smax
    C15 2 480 8.9E9 0.79 1.6 0.007 0.61 1.9E7 1.5E6 0.01 7
    C30 2 500 1.5E10 0.79 1.6 0.007 0.61 5.0E7 4.2E6 0.01 7
    C60 2 636 1.8E10 0.79 1.6 0.007 0.61 6.6E7 5.5E6 0.01 7
    C80 2 645 2.0E10 0.79 1.6 0.007 0.61 1.0E8 8.3E6 0.01 7
    serial number Pcrush/Pa μcrush Plock/Pa μlock D1 D2 K1/Pa K2/Pa K3/Pa
    C15 6.3E6 0.001 6.0E8 0.1 0.04 1 8.5E10 -1.71E11 2.08E11
    C30 1.6E7 0.001 1.0E9 0.1 0.04 1 8.5E10 -1.71E11 2.08E11
    C60 2.2E7 0.001 1.2E9 0.1 0.04 1 8.5E10 -1.71E11 2.08E11
    C80 3.3E7 0.001 1.3E9 0.1 0.04 1 8.5E10 -1.71E11 2.08E11
    下载: 导出CSV
  • [1] 刘永胜, 王肖钧, 金挺, 等. 钢纤维混凝土力学性能和本构关系研究[J]. 中国科学技术大学学报, 2007, 37 (7): 717-723.

    LIU Yongsheng, WANG Xiaojun, JIN Ting, et al. Study on the mechanical properties and constitutive relation of steel fiber reinforced concrete[J]. Journal of University of Science and Technology of China, 2007, 37 (7): 717-723. (in Chinese)
    [2] 宁鹏博, 刘军, 赵硕, 等. 钢纤维增强混凝土动态力学性能及HJC本构模型参数标定[J]. 中国建材科技, 2024, 33 (3): 20-25.

    NING Pengbo, LIU Jun, ZHAO Shou, et al. Dynamic mechanical properties of steel fiber reinforced concrete and parameter calibration of HJC constitutive model[J]. China Building Materials Science & Technology, 2024, 33 (3): 20-25. (in Chinese)
    [3] 杨石刚, 罗泽, 许继恒, 等. 侵彻爆炸作用下钢纤维混凝土结构的破坏模式[J]. 爆炸与冲击, 2024, 44 (1): 151-163.

    YANG Shigang, LUO Ze, XU Jiheng, et al. Failure modes of concrete structure under penetration and explosion[J]. Explosion and Shock Waves, 2024, 44 (1): 151-163. (in Chinese)
    [4] 张磊, 郝龙, 项笑炎. 主动围压下钢纤维混凝土动态力学性能研究[C]//第五届全国强动载效应及防护学术会议暨复杂介质/结构的动态力学行为创新研究群体学术研讨会. 呼和浩特, 2013.

    ZHANG Lei, HAO Long, XIANG Xiaoyan. Study on the dynamic mechanical properties of steel fiber reinforced concrete under confining pressure[C]//The 5 th National Academic Conference on Strong Dynamic Load Effect and Protection and the Group Academic Seminar on Innovative Research on Dynamic Mechanical Behavior of Complex Media/Structures. Hohhot, 2013. (in Chinese)
    [5] 李世超. 钢纤维混凝土的静动态力学性能研究[D]. 南京: 南京理工大学, 2019.

    LI Shichao. Study on static and dynamic mechanical properties of steel fiber reinforced concrete[D]. Nanjing: Nanjing University of Science & Technology, 2019. (in Chinese)
    [6] 张磊, 任新见, 郝龙. 围压下钢纤维混凝土冲击动力学性能研究[J]. 兵工学报, 2014, 35 (S2): 275-280.

    ZHANG Lei, REN Xinjian, HAO Long. Study of the impact dynamic mechanical properties of steel fiber reinforced concrete under confining pressure [J]. Acta Armamentarii, 2014, 35 (S2): 275-280. (in Chinese)
    [7] 徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究[J]. 爆炸与冲击, 2019, 39 (7): 4-11.

    XU Songlin, SHAN Junfang, WANG Pengfei, et al. Penetration performance of concrete under triaxial stress[J]. Explosion and Shock Waves, 2019, 39 (7): 4-11. (in Chinese)
    [8] 徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究[J]. 爆炸与冲击, 2017, 37 (2): 180-185.

    XU Songlin, WANG Pengfei, ZHAO Jian, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar[J]. Explosion and Shock Waves, 2017, 37 (2): 180-185. (in Chinese)
    [9] LIU K, ZHANG Q B, WU G, et al. Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar[J]. Rock Mechanics and Rock Engineering, 2019, 52 (7): 2175-2195. doi: 10.1007/s00603-018-1691-y
    [10] 张楚汉. 论岩石、混凝土离散-接触-断裂分析[J]. 岩石力学与工程学报, 2008, 27 (2): 217-235.

    ZHANG Chuhan. Discrete-contact-fracture analysis of rock and concrete[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27 (2): 217-235. (in Chinese)
    [11] CAI B, LU S, FU F. Behavior of steel fiber-reinforced coal gangue concrete beams under impact load[J]. Engineering Structures, 2024, 314 : 118306. doi: 10.1016/j.engstruct.2024.118306
    [12] 仇杰峰. 混凝土相场损伤模型与扩展有限元方法对比研究[D]. 广州: 华南理工大学, 2019.

    QIU Jiefeng. Comparative study of phase-field regularized cohesive zone model and extended finite element method in concrete[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
    [13] 刘泉声, 刘学伟. 多场耦合作用下岩体裂隙扩展演化关键问题研究[J]. 岩土力学, 2014, 35 (2): 305-320.

    LIU Quansheng, LIU Xuewei. Research on critical problem for fracture network propagation and evolution with multifield coupling of fractured rock mass[J]. Rock and Soil Mechanics, 2014, 35 (2): 305-320. (in Chinese)
    [14] 夏才初, 许崇帮. 非连续变形分析(DDA)中断续节理扩展的模拟方法研究和试验验证[J]. 岩石力学与工程学报, 2010, 29 (10): 2027-2033.

    XIA Caichu, XU Chongbang. Study of fracturing algorithm of intermittent joint by DDA and experimental validation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29 (10): 2027-2033. (in Chinese)
    [15] NING Y, YANG J, AN X, et al. Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework[J]. Computers and Geotechnics, 2011, 38 (1): 40-49. doi: 10.1016/j.compgeo.2010.09.003
    [16] NING Y J, AN X M, MA G W. Footwall slope stability analysis with the numerical manifold method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48 (6): 964-975. doi: 10.1016/j.ijrmms.2011.06.011
    [17] 李铮, 郭德平, 周小平, 等. 模拟岩石中裂纹扩展连接的近场动力学方法[J]. 岩土力学, 2019, 40 (12): 4711-4721.

    LI Zheng, GUO Deping, ZHOU Xiaoping, et al. Numerical simulation of crack propagation and coalescence using peridynamics[J]. Rock and Soil Mechanics, 2019, 40 (12): 4711-4721. (in Chinese)
    [18] 卞梁. 高速碰撞中的SPH方法及其应用研究[D]. 合肥: 中国科学技术大学, 2009.

    BIAN Liang. The SPH method and its application in hypervelocity impact[D]. Hefei: University of Science and Technology of China, 2009. (in Chinese)
    [19] 肖毅华. 有限元法与光滑粒子法的耦合算法研究[D]. 长沙: 湖南大学, 2012.

    XIAO Yihua. Study on coupling algorithm of finite element method and smoothed particle hydrodynamics[D]. Changsha: Hunan University, 2012. (in Chinese)
    [20] 王帅. 基于FEM/SPH方法的水下爆炸冲击荷载作用下的混凝土重力坝破坏模式研究[D]. 天津: 天津大学, 2012.

    WANG Shuai. Research on the failure mode of the concrete gravity dam under blast loading based on FEM/SPH coupling method[D]. Tianjin: Tianjin University, 2012. (in Chinese)
    [21] 纪冲, 龙源, 方向. 基于FEM-SPH耦合法的弹丸侵彻钢纤维混凝土数值模拟[J]. 振动与冲击, 2010, 29 (7): 69-74.

    JI Chong, LONG Yuan, FANG Xiang. Numerical simulation for projectile penetrating steel fiber reinforced concrete with FEM-SPH coupling algorithm[J]. Journal of Vibration and Shock, 2010, 29 (7): 69-74. (in Chinese)
    [22] 马春驰, 陈柯竹, 李天斌, 等. 基于GDEM的应力-结构型岩爆数值模拟研究[J]. 隧道与地下工程灾害防治, 2020, 2 (3): 85-94.

    MA Chunchi, CHEN Kezhu, LI Tianbin, et al. Numerical simulation of stress-structural rockburst based on GDEM software[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2 (3): 85-94. (in Chinese)
    [23] 孔祥振, 方秦. 基于SPH方法对强动载下混凝土结构损伤破坏的数值模拟研究[J]. 中国科学: 物理学力学天文学, 2020, 50 (2): 25-33.

    KONG Xiangzhen, FANG Qin. Numerical predictions of failures in concrete structures subjected to intense dynamic loadings using the smooth particle hydrodynamics method[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50 (2): 25-33. (in Chinese)
    [24] 郝龙. 围压状态下钢纤维混凝土试件动态力学性能的试验研究[D]. 南京: 河海大学, 2013.

    HAO Long. The experiment study on the dynamic mechanical properties of steel fiber reinforced concrete specimen with confining pressure[D]. Nanjing: Hohai University, 2013. (in Chinese)
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  14
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18
  • 修回日期:  2025-01-31
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回