留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异形点阵夹芯结构底板抗爆炸冲击设计与优化研究

张昊 段晟昱 符瑞 彭小洋 雷红帅

张昊, 段晟昱, 符瑞, 彭小洋, 雷红帅. 异形点阵夹芯结构底板抗爆炸冲击设计与优化研究[J]. 应用数学和力学, 2025, 46(5): 582-590. doi: 10.21656/1000-0887.450294
引用本文: 张昊, 段晟昱, 符瑞, 彭小洋, 雷红帅. 异形点阵夹芯结构底板抗爆炸冲击设计与优化研究[J]. 应用数学和力学, 2025, 46(5): 582-590. doi: 10.21656/1000-0887.450294
ZHANG Hao, DUAN Shengyu, FU Rui, PENG Xiaoyang, LEI Hongshuai. Design and Optimization Study on Blast Resistance of Irregular Lattice Structure Base Floor[J]. Applied Mathematics and Mechanics, 2025, 46(5): 582-590. doi: 10.21656/1000-0887.450294
Citation: ZHANG Hao, DUAN Shengyu, FU Rui, PENG Xiaoyang, LEI Hongshuai. Design and Optimization Study on Blast Resistance of Irregular Lattice Structure Base Floor[J]. Applied Mathematics and Mechanics, 2025, 46(5): 582-590. doi: 10.21656/1000-0887.450294

异形点阵夹芯结构底板抗爆炸冲击设计与优化研究

doi: 10.21656/1000-0887.450294
基金项目: 

国家重点研发计划 2022YFB4601901

国家自然科学基金 12122202

国家自然科学基金 12302078

国家自然科学基金 U22B2083

详细信息
    作者简介:

    张昊(2001—),男,硕士生(E-mail: zhanghaoofficial@bit.edu.cn)

    通讯作者:

    段晟昱(1995—),男,副教授,博士生导师(通讯作者. E-mail: shengyu_duan@126.com)

  • 中图分类号: O347

Design and Optimization Study on Blast Resistance of Irregular Lattice Structure Base Floor

  • 摘要: 提出了一种新型异形点阵夹芯结构底板,并对抗爆炸冲击性能进行了表征与优化研究. 开发了点阵夹芯底板的参数化建模程序,基于有限元方法分析了点阵夹芯底板的爆炸冲击响应,建立了点阵夹芯底板几何参数与抗冲击响应之间的映射模型,实现了适应度函数的快速求解. 发展了点阵夹芯底板抗冲击响应多目标优化设计方法,实现了点阵夹芯底板的轻量化设计. 有限元分析结果表明,优化设计后的点阵夹芯底板实现了24.1%减重与41.7%的抗爆炸冲击性能提升. 该研究为装甲车底板等异形防爆装备的设计与应用提供了方法支撑和技术指导.
  • 图  1  异形点阵夹芯底板示意图

    Figure  1.  Schematic diagram of the irregular lattice floor

    图  2  异形点阵夹芯底板参数化建模流程

    Figure  2.  The irregular lattice floor parametric modeling process

    图  3  不同炸高下实验[22]与仿真结果对比

    为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Comparison of experimental[22] and simulation results at different stand-off distances

    图  4  异形点阵夹芯结构底板示意图及几何参数

    Figure  4.  Comparison of experimental and simulation results at different stand-off distances

    图  5  基于代理模型的参数优化流程

    Figure  5.  The parameter optimization process based on the surrogate model

    图  6  3种构型变形模式

    Figure  6.  Deformation modes in 3 configurations

    表  1  AL-6XN不锈钢J-C本构模型参数

    Table  1.   AL-6XN ss J-C model parameters

    A/MPa B/MPa n C ε·0 m
    410 2 000 1 0.154 4 916 0.154
    下载: 导出CSV

    表  2  设计变量优化结果

    Table  2.   Optimization results of design variables

    design variable initial variable/mm variable range/mm optimization variable/mm
    M1 4 [2, 8] 6
    M2 4 [2, 8] 2
    N 6 [2, 8] 6
    Tf 3.30 [2.0, 10.0] 3.49
    Tb 6.10 [2.0, 10.0] 2.40
    Tr 6.30 [2.0, 10.0] 6.80
    H 70.0 [30.0, 150.0] 113.33
    R 6.3 [2.0, 9.0] 2.87
    下载: 导出CSV

    表  3  目标函数优化结果

    Table  3.   Optimization results of objective function

    configuration mass/t mass reduction ratio disp/mm disp. reduction ratio
    armored floor 0.076 8 - 74.9 -
    origin lattice floor 0.073 1 4.8% 52.5 30.0%
    optimal lattice floor 0.058 3 24.1% 43.7 41.7%
    下载: 导出CSV
  • [1] 林文乐, 王硕, 严波. 柱状炸药自由空气爆炸的网格划分方法研究[J]. 兵器装备工程学报, 2022, 43(1): 61-67. doi: 10.11809/bqzbgcxb2022.01.009

    LIN Wenle, WANG Shuo, YAN Bo. Study on grid division method by cylindrical explosions in infinite air[J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 61-67. (in Chinese) doi: 10.11809/bqzbgcxb2022.01.009
    [2] TRAJKOVSKI J, PERENDA J, KUNC R. Blast response of light armoured vehicles (LAVs) with flat and V-hull floor[J]. Thin-Walled Structures, 2018, 131: 238-244. doi: 10.1016/j.tws.2018.06.040
    [3] 段晟昱, 王潘丁, 刘畅, 等. 增材制造三维点阵结构设计、优化与性能表征方法研究进展[J]. 航空制造技术, 2022, 65(14): 36-48.

    DUAN Shengyu, WANG Panding, LIU Chang, et al. Research progress on design, optimization and performance characterization of additive manufactured 3D lattice structures[J]. Aeronautical Manufacturing Technology, 2022, 65(14): 36-48. (in Chinese)
    [4] 徐田秋, 敬晨晨, 毛昊, 等. 电弧增材制造金属点阵结构研究进展[J]. 电焊机, 2023, 53(2): 76-86.

    XU Tianqiu, JING Chenchen, MAO Hao, et al. Research progress of metal lattice structure based on wire arc additive manufacturing[J]. Electric Welding Machine, 2023, 53(2): 76-86. (in Chinese)
    [5] 陈明继, 裴永茂, 方岱宁. 夹芯型雷达吸波结构的多目标优化[J]. 应用数学和力学, 2010, 31(3): 315-323. doi: 10.3879/j.issn.1000-0887.2010.03.007

    CHEN Mingji, PEI Yongmao, FANG Daining. Multi-objective optimization design of radar absorbing sandwich structure[J]. Applied Mathematics and Mechanics, 2010, 31(3): 315-323. (in Chinese) doi: 10.3879/j.issn.1000-0887.2010.03.007
    [6] 李爽, 杨金水, 吴林志, 等. 边界和杆件倾角对沙漏点阵结构振动特性的影响[J]. 哈尔滨工程大学学报, 2019, 40(5): 878-885.

    LI Shuang, YANG Jinshui, WU Linzhi, et al. Influence of boundary conditions and truss inclination angles on vibration characteristics of the hourglass lattice structure[J]. Journal of Harbin Engineering University, 2019, 40(5): 878-885. (in Chinese)
    [7] FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading[J]. Journal of Applied Mechanics, 2004, 71(3): 386-401. doi: 10.1115/1.1629109
    [8] YI T, CHEN C Q. The impact response of clamped sandwich beams with ordinary and hierarchical cellular cores[J]. International Journal of Impact Engineering, 2012, 47: 14-23. doi: 10.1016/j.ijimpeng.2012.03.001
    [9] WANG Y, ZHAO W, ZHOU G, et al. Analysis and parametric optimization of a novel sandwich panel with double-V auxetic structure core under air blast loading[J]. International Journal of Mechanical Sciences, 2018, 142/143: 245-254. doi: 10.1016/j.ijmecsci.2018.05.001
    [10] 韩笑, 杨丽红, 于国财, 等. 多层梯度点阵夹芯结构抗爆性能研究[J]. 应用力学学报, 2018, 35(1): 185-190.

    HAN Xiao, YANG Lihong, YU Guocai, et al. Blast resistance of multilayer graded lattice sandwich structures[J]. Chinese Journal of Applied Mechanics, 2018, 35(1): 185-190. (in Chinese)
    [11] YANG L, SUI L, LI X, et al. Sandwich plates with gradient lattice cores subjected to air blast loadings[J]. Mechanics of Advanced Materials and Structures, 2021, 28(13): 1355-1366. doi: 10.1080/15376494.2019.1669092
    [12] 李金矿, 万文玉, 刘闯. 形状记忆合金蜂窝结构抗冲击性能研究[J]. 应用数学和力学, 2024, 45(1): 34-44. doi: 10.21656/1000-0887.440004

    LI Jinkuang, WAN Wenyu, LIU Chuang. Study on impact resistance of shape memory alloy honeycomb structures[J]. Applied Mathematics and Mechanics, 2024, 45(1): 34-44. (in Chinese) doi: 10.21656/1000-0887.440004
    [13] 时圣波, 王韧之, 唐佳宾, 等. 复合点阵结构强爆炸冲击载荷下的损伤机理与动态响应特性[J]. 爆炸与冲击, 2023, 43(6): 39-53.

    SHI Shengbo, WANG Renzhi, TANG Jiabin, et al. Failure mechanism and dynamic response of a composite lattice structure under intense explosion loadings[J]. Explosion and Shock Waves, 2023, 43(6): 39-53. (in Chinese)
    [14] FENG L J, WEI G T, YU G C, et al. Underwater blast behaviors of enhanced lattice truss sandwich panels[J]. International Journal of Mechanical Sciences, 2019, 150: 238-246. doi: 10.1016/j.ijmecsci.2018.10.025
    [15] YAN Z, LIU Y, YAN J, et al. Blast performance of 3D-printed auxetic honeycomb sandwich beams[J]. Thin-Walled Structures, 2023, 193: 111257. doi: 10.1016/j.tws.2023.111257
    [16] RAMOS H, PICKERING E, ALMAHRI S, et al. Experimental evaluation of hybrid lattice structures subjected to blast loading[J]. Additive Manufacturing, 2023, 76: 103751. doi: 10.1016/j.addma.2023.103751
    [17] YUEN S C K, LANGDON G S, NURICK G N, et al. Response of V-shape plates to localised blast load: experiments and numerical simulation[J]. International Journal of Impact Engineering, 2012, 46: 97-109. doi: 10.1016/j.ijimpeng.2012.02.007
    [18] 张凯, 张庆明, 贾伟. 多层圆管夹芯结构的装甲车底板防爆设计[J]. 安全与环境学报, 2017, 17(3): 969-974.

    ZHANG Kai, ZHANG Qingming, JIA Wei. On the safety design of the multilayer circular-tube structure of the armored vehicle plate under the explosion loading[J]. Journal of Safety and Environment, 2017, 17(3): 969-974. (in Chinese)
    [19] NEMAT-NASSER S, GUO W G, KIHL D P. Thermomechanical response of AL-6XN stainless steel over a wide range of strain rates and temperatures[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(8): 1823-1846. doi: 10.1016/S0022-5096(00)00069-7
    [20] 费广磊, 马天宝, 郝莉. 三维爆炸与冲击问题的大规模高性能计算研究[J]. 应用数学和力学, 2011, 32(3): 357-364. doi: 10.3879/j.issn.1000-0887.2011.03.011

    FEI Guanglei, MA Tianbao, HAO Li. Large scall high performance computation on 3D explosion and shock problems[J]. Applied Mathematics and Mechanics, 2011, 32(3): 357-364. (in Chinese) doi: 10.3879/j.issn.1000-0887.2011.03.011
    [21] 解江, 李翰, 周书婷, 等. 爆炸冲击载荷下航空铝合金平板动态响应数值分析方法[J]. 应用数学和力学, 2017, 38(4): 410-420. doi: 10.21656/1000-0887.370252

    XIE Jiang, LI Han, ZHOU Shuting, et al. A numerical method for dynamic responses of aviation aluminum alloy plates under blast loads[J]. Applied Mathematics and Mechanics, 2017, 38(4): 410-420. (in Chinese) doi: 10.21656/1000-0887.370252
    [22] DHARMASENA K P, WADLEY H N G, WILLIAMS K, et al. Response of metallic pyramidal lattice core sandwich panels to high intensity impulsive loading in air[J]. International Journal of Impact Engineering, 2011, 38(5): 275-289. doi: 10.1016/j.ijimpeng.2010.10.002
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  11
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-29
  • 修回日期:  2024-12-05
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回