留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔挠曲电型超材料板中的弯曲波分析

赵昊阳 何状状 张春利

赵昊阳, 何状状, 张春利. 多孔挠曲电型超材料板中的弯曲波分析[J]. 应用数学和力学, 2024, 45(11): 1405-1415. doi: 10.21656/1000-0887.450282
引用本文: 赵昊阳, 何状状, 张春利. 多孔挠曲电型超材料板中的弯曲波分析[J]. 应用数学和力学, 2024, 45(11): 1405-1415. doi: 10.21656/1000-0887.450282
ZHAO Haoyang, HE Zhuangzhuang, ZHANG Chunli. Bending Wave Analysis of Porous Flexoelectric Metamaterial Plates[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1405-1415. doi: 10.21656/1000-0887.450282
Citation: ZHAO Haoyang, HE Zhuangzhuang, ZHANG Chunli. Bending Wave Analysis of Porous Flexoelectric Metamaterial Plates[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1405-1415. doi: 10.21656/1000-0887.450282

多孔挠曲电型超材料板中的弯曲波分析

doi: 10.21656/1000-0887.450282
(我刊青年编委张春利来稿)
基金项目: 

国家重点研发计划 2020YFA0711701

详细信息
    作者简介:

    赵昊阳(2002—),男,博士生(E-mail: 12424028@zju.edu.cn)

    何状状(1996—),男,博士生(E-mail: hezz@zju.edu.cn)

    通讯作者:

    张春利(1980—),男,教授,博士,博士生导师(通讯作者. E-mail: zhangcl01@zju.edu.cn)

  • 中图分类号: O343.5

Bending Wave Analysis of Porous Flexoelectric Metamaterial Plates

(Contributed by ZHANG Chunli, M.AMM Youth Editorial Board)
  • 摘要: 多孔介电超材料由于内部孔洞导致应变的空间非均匀分布,特别是在孔洞边缘处应变梯度尤为显著,从而产生显著的挠曲电耦合效应. 因此,多孔介电超材料是一类具有挠曲电型力电耦合特性的智能超材料,有广阔的应用前景. 该文采用混合有限元法,研究了弯曲波在多孔挠曲电型超材料板中的传播特性,重点分析了孔径大小、孔的数量以及胞元内孔径梯度分布参数等因素对弹性波带隙结构的影响. 研究表明:由于挠曲电耦合效应使得整体结构的有效刚度增加,弯曲波带隙频率增高;随着孔径增大,弯曲波带隙频率降低,带隙宽度减小;随着孔洞数量增加,带隙频率逐渐降低,并出现带隙的“开-闭”现象;对于孔径呈梯度分布的多孔介电超材料板,梯度指数越大,弯曲波带隙的宽度越大.
    1)  (我刊青年编委张春利来稿)
  • 图  1  多孔超材料板示意图

    Figure  1.  The sketch of a porous metamaterial plate

    图  2  Q54单元示意图

    Figure  2.  The sketch of element Q54

    图  3  无限长PEEK板中的弯曲波带隙

    Figure  3.  The bandgap of flexural waves in an infinite PEEK plate

    图  4  弯曲波带隙结构

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  The bandgap structure of flexural waves

    图  5  孔径对弯曲波带隙位置的影响

    Figure  5.  Effects of the aperture diameter on the flexural wave bandgap position

    图  6  不同列数n下弯曲波第一、第二和第三带隙的上下边界频率体(R=15 nm)

    Figure  6.  The upper and lower edge frequencies of the 1st 3 flexural wave bandgaps for different n values (R=15 nm)

    图  7  不同梯度指数对弯曲波带隙的影响

    Figure  7.  Effects of different gradient indices on the bandgap of flexural waves

    表  1  PEEK材料的材料常数

    Table  1.   Material constants of PEEK

    constant value
    tensile modulus E/GPa 3.6
    Poisson’s ratio ν 0.38
    flexoelectric coefficient f11/(nC/m) 0.001 5
    flexoelectric coefficient f12/(nC/m) 17.61
    flexoelectric coefficient f44/(nC/m) -0.019
    density ρ/(kg/m3) 1 300
    permittivity (ε11=ε33)/(nF/m) 3.079 5×10-2
    下载: 导出CSV
  • [1] 段东升. 智能材料在航空工业中的应用和发展建议[J]. 科技创新导报, 2019, 16(5): 12, 14.

    DUAN Dongsheng. Suggestions for the application and development of smart materials in the aviation industry[J]. Science and Technology Innovation Herald, 2019, 16(5): 12, 14. (in Chinese)
    [2] LU C X, HSIEH M T, HUANG Z F, et al. Architectural design and additive manufacturing of mechanical metamaterials: a review[J]. Engineering, 2022, 17: 44-63. doi: 10.1016/j.eng.2021.12.023
    [3] SUN H X, ZHANG S Y, SHUI X J. A tunable acoustic diode made by a metal plate with periodical structure[J]. Applied Physics Letters, 2012, 100(10): 103507. doi: 10.1063/1.3693374
    [4] LIU Z F, WU B, HE C F. The properties of optimal two-dimensional phononic crystals with different material contrasts[J]. Smart Materials and Structures, 2016, 25(9): 095036. doi: 10.1088/0964-1726/25/9/095036
    [5] CAO Y J, YUN G H, LIANG X X, et al. Band structures of two-dimensional magnonic crystals with different shapes and arrangements of scatterers[J]. Journal of Physics D: Applied Physics, 2010, 43(30): 305005. doi: 10.1088/0022-3727/43/30/305005
    [6] LI Y M, KONG P, BI R G, et al. Valley topological states in double-surface periodic elastic phonon crystal plates[J]. Acta Physica Sinica, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [7] HUANG Y, ZHANG C L, CHEN W Q. Elastic wave band structures and defect states in a periodically corrugated piezoelectric plate[J]. Journal of Applied Mechanics, 2014, 81(8): 081005. doi: 10.1115/1.4027487
    [8] SHEN N, CONG Y, GU S T, et al. Design of phononic crystals using superposition of defect and gradient-index for enhanced wave focusing[J]. Smart Materials and Structures, 2024, 33(8): 085034. doi: 10.1088/1361-665X/ad62cb
    [9] LI F L, ZHANG C Z, WANG Y S. Band structure analysis of phononic crystals with imperfect interface layers by the BEM[J]. Engineering Analysis With Boundary Elements, 2021, 131: 240-257. doi: 10.1016/j.enganabound.2021.06.024
    [10] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. doi: 10.1126/science.289.5485.1734
    [11] MEHANEY A, AHMED A M. Locally resonant phononic crystals at low frequencies based on porous SiC multilayer[J]. Scientific Reports, 2019, 9(1): 14767. doi: 10.1038/s41598-019-51329-z
    [12] YIP K L S, JOHN S. Sound trapping and waveguiding in locally resonant viscoelastic phononic crystals[J]. Scientific Reports, 2023, 13(1): 15313. doi: 10.1038/s41598-023-42452-z
    [13] 倪安辰, 石志飞, 孟庆娟. 针对交通环境减振的超表面型波屏障[J]. 工程力学, 2024, 41(S1): 317-325.

    NI Anchen, SHI Zhifei, MENG Qingjuan. Metasurface wave barriers for ambient vibration mitigation[J]. Engineering Mechanics, 2024, 41(S1): 317-325. (in Chinese)
    [14] 王倚天, 赵建雷, 张铭凯, 等. 含机构位移模式的超材料低频宽带波动控制[J]. 科学通报, 2022, 67(12): 1326-1336.

    WANG Yitian, ZHAO Jianlei, ZHANG Mingkai, et al. Mechanism-based metamaterials for low-frequency broadband wave control[J]. Chinese Science Bulletin, 2022, 67(12): 1326-1336. (in Chinese)
    [15] FAN S W, ZHAO S D, CAO L Y, et al. Reconfigurable curved metasurface for acoustic cloaking and illusion[J]. Physical Review B, 2020, 101(2): 024104. doi: 10.1103/PhysRevB.101.024104
    [16] 袁毅, 游镇宇, 陈伟球. 压电超构材料及其波动控制研究: 现状与展望[J]. 力学学报, 2021, 53(8): 2101-2116.

    YUAN Yi, YOU Zhenyu, CHEN Weiqiu. Piezoelectric metamaterials and wave control: status quo and prospects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2101-2116. (in Chinese)
    [17] WANG Y Z, LI F M, KISHIMOTO K, et al. Elastic wave band gaps in magnetoelectroelastic phononic crystals[J]. Wave Motion, 2009, 46(1): 47-56. doi: 10.1016/j.wavemoti.2008.08.001
    [18] WANG Z, ZHANG Q, ZHANG K, et al. Tunable digital metamaterial for broadband vibration isolation at low frequency[J]. Advanced Materials, 2016, 28(44): 9857-9861. doi: 10.1002/adma.201604009
    [19] JIANG S, DAI L, CHEN H, et al. Folding beam-type piezoelectric phononic crystal with low-frequency and broad band gap[J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(3): 411-422. doi: 10.1007/s10483-017-2171-7
    [20] LV X F, XU S F, HUANG Z L, et al. A shape memory alloy-based tunable phononic crystal beam attached with concentrated masses[J]. Physics Letters A, 2020, 384(2): 126056. doi: 10.1016/j.physleta.2019.126056
    [21] WU B, JIANG W, JIANG J, et al. Wave manipulation in intelligent metamaterials: recent progress and prospects[J]. Advanced Functional Materials, 2024, 34(29): 2316745. doi: 10.1002/adfm.202316745
    [22] RÖDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6): 1659-1681. doi: 10.1016/j.jeurceramsoc.2014.12.013
    [23] ACOSTA M, NOVAK N, ROJAS V, et al. BaTiO3 based piezoelectrics: fundamentals, current status, and perspectives[J]. Applied Physics Reviews, 2017, 4(4): 041305. doi: 10.1063/1.4990046
    [24] GUO Q, LI F, XIA F, et al. Piezoelectric ceramics with high piezoelectricity and broad temperature usage range[J]. Journal of Materiomics, 2021, 7(4): 683-692. doi: 10.1016/j.jmat.2020.11.012
    [25] ZUBKO P, CATALAN G, TAGANTSEV A K. Flexoelectric effect in solids[J]. Annual Review of Materials Research, 2013, 43: 387-421. doi: 10.1146/annurev-matsci-071312-121634
    [26] 申胜平, 梁旭, 邓谦. 挠曲电理论及应用[M]. 北京: 科学出版社, 2022.

    SHEN Shengping, LIANG Xu, DENG Qian. Flexural Electricity Theory and Its Application[M]. Beijing: Science Press, 2022. (in Chinese)
    [27] ZHUANG X, NGUYEN B H, NANTHAKUMAR S S, et al. Computational modeling of flexoelectricity: a review[J]. Energies, 2020, 13(6): 1326. doi: 10.3390/en13061326
    [28] 张春利. 多铁性结构简化分析体系及其应用[D]. 杭州: 浙江大学, 2011.

    ZHANG Chunli. Simplifying analysis framework for multiferroic structures and the applications[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
    [29] 陈少华, 王自强. 应变梯度理论进展[J]. 力学进展, 2003, 33(2): 207-216.

    CHEN Shaohua, WANG Ziqiang. Advances in strain gradient theory[J]. Advances in Mechanics, 2003, 33(2): 207-216. (in Chinese)
    [30] XU L, SHEN S P. Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity[J]. International Journal of Applied Mechanics, 2013, 5(2): 1350015. doi: 10.1142/S1758825113500154
    [31] YAN D, WANG J, XIANG J, et al. A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator[J]. Science Advances, 2023, 9(2): eadc8845. doi: 10.1126/sciadv.adc8845
    [32] HE Z, ZHANG G, CHEN X, et al. Elastic wave harvesting in piezoelectric-defect-introduced phononic crystal microplates[J]. International Journal of Mechanical Sciences, 2023, 239: 107892. doi: 10.1016/j.ijmecsci.2022.107892
    [33] DENG F, DENG Q, YU W, et al. Mixed finite elements for flexoelectric solids[J]. Journal of Applied Mechanics, 2017, 84(8): 081004. doi: 10.1115/1.4036939
    [34] MAO S, PUROHIT P K, ARAVAS N. Mixed finite-element formulations in piezoelectricity and flexoelectricity[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2016, 472(2190): 20150879.
    [35] HE Z Z, ZHANG C L, ZHANG C Z, et al. programmable dielectric metamaterial plates via flexoelectricity and L-C circuits[J/OL]. [2024-11-05]. https://www.researchgate.net/publication/384121619_Programmable_Dielectric_Metamaterial_Plates_Via_Flexoelectricity_and_L-C_Circuits. DOI: 10.2139/ssrn.4960147.
    [36] YANG C C, TIAN X Y, LI D C, et al. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material[J]. Journal of Materials Processing Technology, 2017, 248: 1-7. doi: 10.1016/j.jmatprotec.2017.04.027
    [37] MUHAMMAD G, ZHOU W J, LIM C W. Topological edge modeling and localization of protected interface modes in 1D phononic crystals for longitudinal and bending elastic waves[J]. International Journal of Mechanical Sciences, 2019, 159: 359-372. doi: 10.1016/j.ijmecsci.2019.05.020
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  42
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-21
  • 修回日期:  2024-11-05
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回