留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道中流体弹性对颗粒聚集的影响

赵可馨 王企鲲 柯灵杰

赵可馨, 王企鲲, 柯灵杰. 微通道中流体弹性对颗粒聚集的影响[J]. 应用数学和力学, 2025, 46(10): 1256-1266. doi: 10.21656/1000-0887.450275
引用本文: 赵可馨, 王企鲲, 柯灵杰. 微通道中流体弹性对颗粒聚集的影响[J]. 应用数学和力学, 2025, 46(10): 1256-1266. doi: 10.21656/1000-0887.450275
ZHAO Kexin, WANG Qikun, KE Lingjie. The Influence Effect of Fluid Elasticity on Particle Aggregation in Microchannels[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1256-1266. doi: 10.21656/1000-0887.450275
Citation: ZHAO Kexin, WANG Qikun, KE Lingjie. The Influence Effect of Fluid Elasticity on Particle Aggregation in Microchannels[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1256-1266. doi: 10.21656/1000-0887.450275

微通道中流体弹性对颗粒聚集的影响

doi: 10.21656/1000-0887.450275
基金项目: 

国家自然科学基金 52576166

详细信息
    作者简介:

    赵可馨(2000—),女,硕士生(E-mail: 2556469008@qq.com)

    通讯作者:

    王企鲲(1978—),男,副教授,博士(通讯作者. E-mail: wangqk@usst.edu.cn)

  • 中图分类号: O359

The Influence Effect of Fluid Elasticity on Particle Aggregation in Microchannels

  • 摘要: 采用“相对运动模型”对黏弹性流体中颗粒聚集现象进行数值模拟,使用Oldroyd-B流体来描述黏弹本构关系,并用对数构象张量法稳定数值模拟,探究黏弹性流体的弹性差异对颗粒聚集特性因素的影响.研究结果表明:黏弹性流体中Wi数升高和β值降低均能使通道内流体弹性增强,颗粒径向位置受力发生明显波动;决定颗粒径向分布的本质是惯性力的分布,弹性升力波动也会造成惯性升力的波动,惯性与弹性非线性共存;高Wi数,低β值使颗粒所受升力指向管道中心的范围逐渐增大,使颗粒由管道壁面聚集转而向中心聚集.此外,强弹性流体会使颗粒受力方向始终指向管道中心.
  • 图  1  计算模型示意图

    Figure  1.  Schematic diagram of the calculation model

    图  2  数值网格模型

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The numerical grid model

    图  3  网格无关性验证

    Figure  3.  The grid independence verification

    图  4  颗粒升力结果对比

    Figure  4.  Comparison of particle lift results

    图  5  颗粒总升力变化情况

    Figure  5.  Changes of particle total lifts

    图  6  颗粒弹性升力变化情况

    Figure  6.  Changes of particle elastic lifts

    图  7  颗粒惯性升力变化情况

    Figure  7.  Changes of particle inertial lifts

    图  8  颗粒黏性升力变化情况

    Figure  8.  Changes of particle viscous lifts

    图  9  颗粒压差升力变化情况

    Figure  9.  Changes of particle differential pressure lifts

    图  10  颗粒总升力变化情况

    Figure  10.  Changes of total particle lifts

    图  11  颗粒弹性升力变化情况

    Figure  11.  Changes of particle elastic lifts

    图  12  颗粒惯性升力变化情况

    Figure  12.  Changes of particle inertial lifts

  • [1] D'AVINO G, MAFFETTONE P L. Particle dynamics in viscoelastic liquids[J]. Journal of Non- Newtonian Fluid Mechanics, 2015, 215: 80-104. doi: 10.1016/j.jnnfm.2014.09.014
    [2] D'AVINO G, ROMEO G, VILLONE M M, et al. Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser[J]. Lab on a Chip, 2012, 12(9): 1638-1645. doi: 10.1039/c2lc21154h
    [3] SALAS-BARZOLA X, MAǏTREJEAN G, DE LOUBENS C, et al. Reversal of particle Migration for viscoelastic solution at high solvent viscosity[J]. Journal of Non-Newtonian Fluid Mechanics, 2024, 329: 105234. doi: 10.1016/j.jnnfm.2024.105234
    [4] GOSSETT D R, WEAVER W M, MACH A J, et al. Label-free cell separation and sorting in microfluidic systems[J]. Analytical and Bioanalytical Chemistry, 2010, 397(8): 3249-3267. doi: 10.1007/s00216-010-3721-9
    [5] SETHU P, SIN A, TONER M. Microfluidic diffusive filter for apheresis (leukapheresis)[J]. Lab on a Chip, 2006, 6(1): 83-89. doi: 10.1039/B512049G
    [6] 崔静, 岳茂昌, 牛书鑫, 等. 水滴撞击倾斜非Newton除冰液液膜动力学行为特性数值研究[J]. 应用数学和力学, 2024, 45(3): 337-347. doi: 10.21656/1000-0887.440183

    CUI Jing, YUE Maochang, NIU Shunxin, et al. Numerical study on dynamic behavior characteristics of water droplets hitting inclined non-Newtonian deicing liquid films[J]. Applied Mathematics and Mechanics, 2024, 45(3): 337-347. (in Chinese) doi: 10.21656/1000-0887.440183
    [7] YUAN D, ZHAO Q, YAN S, et al. Recent progress of particle migration in viscoelastic fluids[J]. Lab on a Chip, 2018, 18(4): 551-567. doi: 10.1039/C7LC01076A
    [8] 张仕环, 庞明军, 郑智颖. 低Weissenberg数黏弹性流体中单气泡上浮运动特性研究[J]. 应用数学和力学, 2023, 44(06): 629-642. doi: 10.21656/1000-0887.430328

    ZHANG Shihuan, PANG Mingjun, ZHENG Zhiying. Study on hydrodynamics characteristics of a single bubble in viscoelastic fluid at low weissenberg numbers[J]. Applied Mathematics and Mechanics, 2023, 44(6): 629-642. (in Chinese) doi: 10.21656/1000-0887.430328
    [9] PACEK A. Bubbles, drops and particles in non-Newtonian fluids, R.P. Chhabra, 2nd ed., Taylor & francis group (2007), 770 pp., ISBN-10: 0-8247-7329-5[J]. Chemical Engineering Research and Design, 2008, 86(5): 535-536.
    [10] HUANG P Y, JOSEPH D D. Effects of shear thinning on migration of neutrally buoyant particles in pressure driven flow of Newtonian and viscoelastic fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 2000, 90(2/3): 159-185.
    [11] KARIMI A, YAZDI S, ARDEKANI A M. Hydrodynamic mechanisms of cell and particle trapping in microfluidics [J]. Biomicrofluidics, 2013, 7(2): 21501. doi: 10.1063/1.4799787
    [12] FENG J, HUANG P Y, JOSEPH D D. Dynamic simulation of sedimentation of solid particles in an Oldroyd-B fluid[J]. Journal of Non-Newtonian Fluid Mechanics, 1996, 63(1): 63-88. doi: 10.1016/0377-0257(95)01412-8
    [13] LIU B R, LIN J Z, KU X K, et al. Migration of spherical particles in a confined shear flow of Giesekus fluid[J]. Rheologica Acta, 2019, 58: 639-646. doi: 10.1007/s00397-019-01164-w
    [14] SEO K W, KANG Y J, LEE S J. Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids[J]. Physics of Fluids, 2014, 26(6): 063301. doi: 10.1063/1.4882265
    [15] HWANG W R, HULSEN M A, MEIJER H E H. Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 121(1): 15-33. doi: 10.1016/j.jnnfm.2004.03.008
    [16] XIONG Y L, PENG S, YANG D, et al. Influence of polymer additive on flow past a hydrofoil: a numerical study[J]. Physics of Fluids, 2018, 30(1): 013104. doi: 10.1063/1.5006850
    [17] PENG S, LI J Y, XIONG Y L, et al. Numerical simulation of two-dimensional unsteady Giesekus flow over a circular cylinder[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 294: 104571. doi: 10.1016/j.jnnfm.2021.104571
    [18] 王企鲲, 王浩. 微通道中弹性颗粒所受惯性升力特性的数值研究[J]. 机械工程学报, 2015, 51(14): 160-166.

    WANG Qikun, WANG Hao. Behavior for inertial lift on elastic particles in micro-channel[J]. Journal of Mechanical Engineering, 2015, 51(14): 160-166. (in Chinese)
    [19] 沈洋, 王企鲲, 刘唐京. 剪切稀化流变特性对微通道中颗粒迁移的影响[J]. 应用数学和力学, 2024, 45(5): 637-650. doi: 10.21656/1000-0887.440326

    SHEN Yang, WANG Qikun, LIU Tangjing. Effect of shear thinning rheological properties on particle migration in microchannels[J]. Applied Mathematics and Mechanics, 2024, 45(5): 637-650. (in Chinese) doi: 10.21656/1000-0887.440326
    [20] D'AVINO G, HULSEN M A, GRECO F, et al. Numerical simulations on the dynamics of a spheroid in a viscoelastic liquid in a wide-slit microchannel[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 263: 33-41. doi: 10.1016/j.jnnfm.2018.11.003
    [21] NGUYEN-HOANG H, PHAN-THIEN N, KHOO B C, et al. Completed double layer boundary element method for periodic fibre suspension in viscoelastic fluid[J]. Chemical Engineering Science, 2008, 63 (15): 3898-3908. doi: 10.1016/j.ces.2008.04.058
    [22] 蔡伟华, 李小斌, 张红娜, 等. 黏弹性流体动力学[M]. 北京: 科学出版社, 2016: 69.

    CAI Weihua, LI Xiaobin, ZHANG Hongna, et al. Viscoelastic Fluid Dynamics[M]. Beijing: Science Press, 2016: 69. (in Chinese)
    [23] SURESHKUMAR R, BERIS A N. Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows[J]. Journal of Non-Newtonian Fluid Mechanics, 1995, 60(1): 53-80. doi: 10.1016/0377-0257(95)01377-8
    [24] FATTAL R, KUPFERMAN R. Constitutive laws for the matrix-logarithm of the conformation tensor[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 123(2/3): 281-285.
    [25] ALVES M A, OLIVEIRA P J, PINHO F T. A convergent and universally bounded interpolation scheme for the treatment of advection[J]. International Journal for Numerical Methods in Fluids, 2003, 41 (1): 47-75. doi: 10.1002/fld.428
    [26] PIMENTA F. RheoTool[EB/OL]. (2022-07-02)[2024-10-16]. https://github.com/fppimenta/rheoTool.
  • 加载中
图(12)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  29
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-16
  • 修回日期:  2025-02-17
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回