留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偶应力弹性梯度理论的饱和孔隙介质中Rayleigh波的传播特性

李国强 郑佩 张克明

李国强, 郑佩, 张克明. 基于偶应力弹性梯度理论的饱和孔隙介质中Rayleigh波的传播特性[J]. 应用数学和力学, 2025, 46(10): 1329-1341. doi: 10.21656/1000-0887.450259
引用本文: 李国强, 郑佩, 张克明. 基于偶应力弹性梯度理论的饱和孔隙介质中Rayleigh波的传播特性[J]. 应用数学和力学, 2025, 46(10): 1329-1341. doi: 10.21656/1000-0887.450259
LI Guoqiang, ZHENG Pei, ZHANG Keming. Propagation Characteristics of Rayleigh Waves in Saturated Porous Media Based on the Couple-Stress Elastic Gradient Theory[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1329-1341. doi: 10.21656/1000-0887.450259
Citation: LI Guoqiang, ZHENG Pei, ZHANG Keming. Propagation Characteristics of Rayleigh Waves in Saturated Porous Media Based on the Couple-Stress Elastic Gradient Theory[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1329-1341. doi: 10.21656/1000-0887.450259

基于偶应力弹性梯度理论的饱和孔隙介质中Rayleigh波的传播特性

doi: 10.21656/1000-0887.450259
详细信息
    作者简介:

    李国强(1997—),男,硕士生(E-mail: 1767445763@qq.com)

    张克明(1983—),男,副教授,硕士生导师(E-mail: zhangkeming@usst.edu.cn)

    通讯作者:

    郑佩(1980—),男,副教授,硕士生导师(通讯作者. E-mail: aliaspei@usst.edu.cn)

  • 中图分类号: O347.4+1

Propagation Characteristics of Rayleigh Waves in Saturated Porous Media Based on the Couple-Stress Elastic Gradient Theory

  • 摘要: 基于偶应力弹性梯度理论,研究了饱和孔隙介质中Rayleigh波的传播特性. 首先,基于偶应力理论建立了包含材料内禀长度的波动方程,并在频域内通过位移场的势函数分解,将两组耦合的波动方程解耦为4个标量的Helmholtz方程,分别控制P1波、P2波、SV波和SH波的传播. 进一步,针对Rayleigh波,通过求解Helmholtz方程的特征值问题,确定了势函数的具体形式. 然后,通过引入边界条件,求解了Rayleigh波的传播特性. 最后,通过数值算例,研究了材料内禀长度对Rayleigh波的传播特性的影响规律.
  • 图  1  Rayleigh波波速随频率变化的曲线

    Figure  1.  Comparison curves of the Rayleigh wave velocity

    图  2  不同材料内禀长度下Rayleigh波的波数和衰减系数随频率变化的曲线

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Comparison curves of Rayleigh wave numbers and characteristic attenuation at different material intrinsic lengths

    图  3  Rayleigh波质量因子随频率变化的曲线

    Figure  3.  Quality factors as a function of the frequency for the Rayleigh wave

    图  4  固体骨架的归一化水平和竖向位移沿归一化深度的变化曲线(f=1 000 Hz)

    Figure  4.  The normalized horizontal and vertical displacement curves of the solid skeleton along the normalized depth(f=1 000 Hz)

    图  5  粒子运动轨迹(f=1 000 Hz)

    Figure  5.  Particle motion trajectories(f=1 000 Hz)

    表  1  饱和孔隙介质的材料参数

    Table  1.   Fluid saturated porous media material parameters(Hard sediment)

    property parameter value
    frame shear modulus μ/MPa 26.1
    frame bulk modulus K/MPa 43.6
    porosity ϕ0/% 0.470
    solid density ρ0s/(kg/m3) 2 650
    pore-fluid density ρ0f/(kg/m3) 1 000
    solid bulk modulus Ks/GPa 36.0
    pore-fluid bulk modulus Kf/GPa 2.25
    fluid viscosity coefficient η/(Pa·s) 1.0×10-3
    permeability coefficient $\mathscr{K}$/m2 1.0×10-10
    下载: 导出CSV
  • [1] RAYLEIGH L. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society, 1885, 1(1): 4-11.
    [2] KIM G, IN C W, KIM J Y, et al. Air-coupled detection of nonlinear Rayleigh surface waves in concrete: application to microcracking detection[J]. NDT & E International, 2014, 67: 64-70.
    [3] VOIGT W. Theoritical studies on the elasticity relationships of cristals[J]. R Soc Sci, 1887, 34: 3-51.
    [4] COSSERAT E, COSSERAT F. Theory of Deformable Bodies[M]. Paris: Scientific Library A. Hermann and Sons, 1909.
    [5] TOUPIN R A. Elastic materials with couple-stresses[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 385-414. doi: 10.1007/BF00253945
    [6] TOUPIN R A. Theory of elasticity with couple-stress[J]. Arch Rat Mech Anal, 1964, 17: 85-11. doi: 10.1007/BF00253050
    [7] KOITER W T. Couple stresses in the theory of elasticity Ⅰ & Ⅱ[J]. Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen, 1964, 67: 17-44.
    [8] MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis, 1962, 11(1): 415-448. doi: 10.1007/BF00253946
    [9] YANG F, CHONG A C M, LAM D C C, et al. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures, 2002, 39(10): 2731-2743. doi: 10.1016/S0020-7683(02)00152-X
    [10] ZHENG P, LI G, SUN P, et al. Couple-stress-based gradient theory of poroelasticity[J]. Mathematics and Mechanics of Solids, 2024, 29(1): 173-190. doi: 10.1177/10812865231188930
    [11] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅰ: low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168-178. doi: 10.1121/1.1908239
    [12] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid, Ⅱ: higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179-191. doi: 10.1121/1.1908241
    [13] DING H, TONG L H, XU C, et al. On propagation characteristics of Rayleigh wave in saturated porous media based on the strain gradient nonlocal Biot theory[J]. Computers and Geotechnics, 2022, 141: 104522. doi: 10.1016/j.compgeo.2021.104522
    [14] HIRAI H. Analysis of Rayleigh waves in saturated porous elastic media by finite element method[J]. Soil Dynamics and Earthquake Engineering, 1992, 11(6): 311-326. doi: 10.1016/0267-7261(92)90014-5
    [15] LIU H, ZHOU F, WANG L, et al. Propagation of Rayleigh waves in unsaturated porothermoelastic media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(12): 1656-1675. doi: 10.1002/nag.3081
    [16] TONG L H, LAI S K, ZENG L L, et al. Nonlocal scale effect on Rayleigh wave propagation in porous fluid-saturated materials[J]. International Journal of Mechanical Sciences, 2018, 148: 459-466. doi: 10.1016/j.ijmecsci.2018.08.028
    [17] SU C, GUAN W, YIN Y, et al. Elastic waves in fluid-saturated porous materials with a couple-stress solid phase[J]. Journal of Sound and Vibration, 2024, 569: 117993. doi: 10.1016/j.jsv.2023.117993
    [18] MÜNCH I, NEFF P, MADEO A, et al. The modified indeterminate couple stress model: why Yang et al. 's arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 2017, 97(12): 1524-1554. doi: 10.1002/zamm.201600107
    [19] HADJESFANDIARI A R, DARGUSH G F. Couple stress theory for solids[J]. International Journal of Solids and Structures, 2011, 48(18): 2496-2510. doi: 10.1016/j.ijsolstr.2011.05.002
    [20] HADJESFANDIARI A R. On the skew-symmetric character of the couple-stress tensor[J/OL]. ArXiv: General Physics , 2013[2024-10-25].https://api.semanticscholar.org/CorpusID:116973411.
    [21] AKI K, RICHARDS P G. Quantitative Seismology[M]. 2nd ed. University Science Books, 2002.
    [22] ZHENG P, DING B. Potential method for 3D wave propagation in a poroelastic medium and its applications to Lamb's problem for a poroelastic half-space[J]. International Journal of Geomechanics, 2016, 16(2): 04015048. doi: 10.1061/(ASCE)GM.1943-5622.0000530
    [23] CHENG A H D. Poroelasticity[M]. Switzerland: Springer International Publishing, 2016.
    [24] MAVKO G, MUKERJI T, DVORKIN J. The Rock Physics Handbook[M]. 2nd ed. Cambridge: Cambridge University Press, 2009.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  23
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-25
  • 修回日期:  2024-10-25
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回