留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电/压磁复合楔形结构耦合场的奇异性研究:反平面问题

王国林 温建俊 岳彦美 刘金喜

王国林, 温建俊, 岳彦美, 刘金喜. 压电/压磁复合楔形结构耦合场的奇异性研究:反平面问题[J]. 应用数学和力学, 2024, 45(10): 1256-1267. doi: 10.21656/1000-0887.450244
引用本文: 王国林, 温建俊, 岳彦美, 刘金喜. 压电/压磁复合楔形结构耦合场的奇异性研究:反平面问题[J]. 应用数学和力学, 2024, 45(10): 1256-1267. doi: 10.21656/1000-0887.450244
WANG Guolin, WEN Jianjun, YUE Yanmei, LIU Jinxi. Singularities of Coupled Fields in Piezoelectric/Piezomagnetic Composite Wedges: an Antiplane Problem[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1256-1267. doi: 10.21656/1000-0887.450244
Citation: WANG Guolin, WEN Jianjun, YUE Yanmei, LIU Jinxi. Singularities of Coupled Fields in Piezoelectric/Piezomagnetic Composite Wedges: an Antiplane Problem[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1256-1267. doi: 10.21656/1000-0887.450244

压电/压磁复合楔形结构耦合场的奇异性研究:反平面问题

doi: 10.21656/1000-0887.450244
基金项目: 

国家自然科学基金 11272222

河北省高等学校科学技术研究项目 QN2020204

详细信息
    作者简介:

    王国林(1990—),男,实验师,博士(E-mail: wangglstdu@163.com)

    通讯作者:

    刘金喜(1961—),男,教授,博士,博士生导师(通讯作者. E-mail: liujx02@hotmail.com)

  • 中图分类号: O343

Singularities of Coupled Fields in Piezoelectric/Piezomagnetic Composite Wedges: an Antiplane Problem

  • 摘要: 研究了反平面变形状态下压电/压磁复合楔形结构耦合场的奇异性. 应用复变函数理论和本征函数展开方法,推导了16种机械、电学和磁学组合边界条件下关于奇异性指数本征方程的显函表达式. 基于得到的本征方程,通过数值算例表明了楔角、边界条件和材料组合类型对耦合场奇异性的影响,发现压电效应和压磁效应之间的相互作用导致压电/压磁复合楔磁电弹场的奇异性比压电复合楔电弹场的奇异性更加复杂.
  • 图  1  层状磁电复合材料及楔形结构模型

    Figure  1.  Layered magnetoelectric composites and the wedge model

    图  2  压电/压磁复合楔形结构

    Figure  2.  A piezoelectric (PE)/ piezomagnetic (PM) composite wedge

    图  3  电学开路/磁学短路(FD/FB)边界下,BTO/CFO和PZT-4/CFO楔的奇异性

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The singularity orders for BTO/CFO and PZT-4/CFO wedges with boundary condition combination FD/FB

    图  4  电学开路/磁学开路(FD/FH)边界下,BTO/CFO和PZT-4/CFO楔的奇异性

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  The singularity orders for BTO/CFO and PZT-4/CFO wedges with boundary condition combination FD/FH

    图  5  电学开路/磁学短路(FD/FB)边界下,BTO/CFO和BTO/TFD楔的奇异性

    Figure  5.  The singularity orders for BTO/CFO and BTO/TFD wedges with boundary condition combination FD/FB

    图  6  电学开路/磁学开路(FD/FH)边界下,BTO/CFO和BTO/TFD楔的奇异性

    Figure  6.  The singularity orders for BTO/CFO and BTO/TFD wedges with boundary condition combination FD/FH

    图  7  机械固支-电学开路和机械自由-磁学开路(CD/FH)边界下,BTO/CFO楔的奇异性

    Figure  7.  The singularity orders for the BTO/CFO wedge with boundary condition combination CD/FH

    图  8  机械自由、电学开路和磁学开路(FD/FH)边界下,力磁耦合对BTO/CFO楔奇异性的影响

    Figure  8.  The effect of magnetomechanical coupling on the singularity orders of the BTO/CFO wedge under the FD/FH boundary

    图  9  机械自由、电学开路和磁学短路(FD/FB)边界下,PZT-4/CFO楔最强奇异性指数随楔角αβ的变化

    Figure  9.  Variations of the strongest singularity orders of the PZT-4/CFO wedge under boundary condition combination FD/FB with wedge angles α and β

    图  10  机械自由、电学开路和磁学开路(FD/FH)边界下,PZT-4/CFO楔最强奇异性指数随楔角αβ的变化

    Figure  10.  Variations of the strongest singularity orders of the PZT-4/CFO wedge under the boundary condition combination FD/FH with wedge angles α and β

    表  1  材料常数

    Table  1.   Material constants

    parameter BTO[43] PZT-4[44] CFO[43] TFD[45]
    c44/(1010·N/m2) 4.3 2.56 4.53 0.599
    e15/(C/m2) 11.6 12.7 - -
    ε11/(10-9·C2/(N·m2)) 11.2 6.46 - -
    h15/(N/(A·m)) - - 550 167.66
    μ11/(10-6·N·S2/C2) - - 590 3.98
    下载: 导出CSV
  • [1] NAN C W, BICHURIN M I, DONG S X, et al. Multiferroic magnetoelectric composites: historical perspective, status, and future directions[J]. Journal of Applied Physics, 2008, 103(3): 031101. doi: 10.1063/1.2836410
    [2] ZHAI J Y, XING Z P, DONG S X, et al. Magnetoelectric laminate composites: an overview[J]. Journal of the American Ceramic Society, 2008, 91(2): 351-358. doi: 10.1111/j.1551-2916.2008.02259.x
    [3] SRINIVASAN G. Magnetoelectric composites[J]. Annual Review of Materials Research, 2010, 40: 153-178. doi: 10.1146/annurev-matsci-070909-104459
    [4] WANG Y J, LI J F, VIEHLAND D. Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives[J]. Materials Today, 2014, 17(6): 269-275. doi: 10.1016/j.mattod.2014.05.004
    [5] LEUNG C M, LI J F, VIEHLAND D, et al. A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters[J]. Journal of Physics D: Applied Physics, 2018, 51(26): 263002. doi: 10.1088/1361-6463/aac60b
    [6] CHU Z Q, POURHOSSEINIASL M J, DONG S X. Review of multi-layered magnetoelectric composite materials and devices applications[J]. Journal of Physics D: Applied Physics, 2018, 51(24): 243001. doi: 10.1088/1361-6463/aac29b
    [7] LIANG X F, MATYUSHOV A, HAYES P, et al. Roadmap on magnetoelectric materials and devices[J]. IEEE Transactions on Magnetics, 2021, 57(8): 1-57.
    [8] PAN E, HEYLIGER P R. Free vibrations of simply supported and multilayered magneto-electro-elastic plates[J]. Journal of Sound and Vibration, 2002, 252(3): 429-442. doi: 10.1006/jsvi.2001.3693
    [9] BHANGALE R K, GANESAN N. Free vibration of simply supported functionally graded and layered magneto-electro-elastic plates by finite element method[J]. Journal of Sound and Vibration, 2006, 294(4/5): 1016-1038.
    [10] YANG Z X, DANG P F, HAN Q K, et al. Natural characteristics analysis of magneto-electro-elastic multilayered plate using analytical and finite element method[J]. Composite Structures, 2018, 185: 411-420. doi: 10.1016/j.compstruct.2017.11.031
    [11] NGAK F P E, NTAMACK G E, AZRAR L. Dynamic and static behaviors of multilayered angle-ply magnetoelectroelastic laminates with viscoelastic interfaces[J]. Composite Structures, 2018, 189: 667-687. doi: 10.1016/j.compstruct.2018.01.083
    [12] KUO H Y, WEI K H. Free vibration of multiferroic laminated composites with interface imperfections[J]. Acta Mechanica, 2022, 233(9): 3699-3717. doi: 10.1007/s00707-022-03292-6
    [13] CHEN J Y, PAN E, CHEN H L. Wave propagation in magneto-electro-elastic multilayered plates[J]. International Journal of Solids and Structures, 2007, 44(3/4): 1073-1085.
    [14] 杜建科, 金小英, 王骥. 电磁弹性层状结构中的Love波传播[J]. 中国科学(G辑): 物理学力学天文学, 2007, 37(6): 789-803.

    DU Jianke, JIN Xiaoying, WANG Ji. Love wave propagation in electromagnetic elastic layered structure[J]. Science in China (Series G): Physics, Mechanics & Astronomy, 2007, 37(6): 789-803. (in Chinese)
    [15] ZHOU Y Y, LÜ C F, CHEN W Q. Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections[J]. Composite Structures, 2012, 94(9): 2736-2745. doi: 10.1016/j.compstruct.2012.04.006
    [16] MATAR O B, GASMI N, ZHOU H, et al. Legendre and Laguerre polynomial approach for modeling of wave propagation in layered magneto-electro-elastic media[J]. The Journal of the Acoustical Society of America, 2013, 133(3): 1415-1424. doi: 10.1121/1.4776198
    [17] EZZIN H, AMOR M B, GHOZLEN M H B. Propagation behavior of SH waves in layered piezoelectric/piezomagnetic plates[J]. Acta Mechanica, 2017, 228: 1071-1081. doi: 10.1007/s00707-016-1744-9
    [18] KUO H Y, WANG Y H. Wave motion of magneto-electro-elastic laminated plates with membrane-type interfacial imperfections[J]. Composite Structures, 2022, 293: 115661. doi: 10.1016/j.compstruct.2022.115661
    [19] 张培伟, 周振功, 王彪. 不同功能梯度压电压磁层状介质中共线界面裂纹的动态性能分析[J]. 应用数学和力学, 2007, 28(5): 551-560. doi: 10.3321/j.issn:1000-0887.2007.05.007

    ZHANG Peiwei, ZHOU Zhengong, WANG Biao. Dynamic behavior of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips[J]. Applied Mathematics and Mechanics, 2007, 28(5): 551-560. (in Chinese) doi: 10.3321/j.issn:1000-0887.2007.05.007
    [20] WANG B L, HAN J C, DU S Y. Transient fracture of a layered magnetoelectroelastic medium[J]. Mechanics of Materials, 2010, 42(3): 354-364. doi: 10.1016/j.mechmat.2009.12.002
    [21] HERRMANN K P, LOBODA V V, KHODANEN T V. An interface crack with contact zones in a piezoelectric/piezomagnetic bimaterial[J]. Archive of Applied Mechanics, 2010, 80: 651-670. doi: 10.1007/s00419-009-0330-1
    [22] WAN Y P, YUE Y P, ZHONG Z. Multilayered piezomagnetic/piezoelectric composite with periodic interface cracks under magnetic or electric field[J]. Engineering Fracture Mechanics, 2012, 84: 132-145. doi: 10.1016/j.engfracmech.2012.02.002
    [23] GOVORUKHA V, KAMLAH M, LOBODA V, et al. Interface cracks in piezoelectric materials[J]. Smart Materials and Structures, 2016, 25(2): 023001. doi: 10.1088/0964-1726/25/2/023001
    [24] 赵星. 压电-压磁夹层结构界面裂纹的断裂行为[D]. 南京: 南京航空航天大学, 2020.

    ZHAO Xing. Fracture behavior of interface cracks in piezoelectric-piezomagnetic sandwich structure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
    [25] 延真. 基于扩展有限单元法的压电-压磁双层结构界面裂纹断裂研究[D]. 石家庄: 石家庄铁道大学, 2021.

    YAN Zhen. Fracture analysis of interfacial cracks in piezoelectric-piezomagnetic bi-layered structures by the extended finite element method[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021. (in Chinese)
    [26] SAVRUK M P, KAZBERUK A. Stress concentration near sharp and rounded V-notches in orthotropic and quasi-orthotropic bodies[J]. Theoretical and Applied Fracture Mechanics, 2016, 84: 166-176. doi: 10.1016/j.tafmec.2016.02.006
    [27] PENADO F E. Analysis ofbimaterial singular regions for orthotropic and isotropic materials under thermal loading[J]. Engineering Fracture Mechanics, 2021, 243: 107527. doi: 10.1016/j.engfracmech.2021.107527
    [28] SHIN K C, KIM W S, LEE J J. Application of stress intensity to design of anisotropic/isotropic bi-materials with a wedge[J]. International Journal of Solids and Structures, 2007, 44(24): 7748-7766. doi: 10.1016/j.ijsolstr.2007.05.014
    [29] LIU T J C, CHUE C H. On the singularities in abimaterial magneto-electro-elastic composite wedge under antiplane deformation[J]. Composite Structures, 2006, 72(2): 254-265. doi: 10.1016/j.compstruct.2004.11.009
    [30] SUE W C, LIOU J Y, SUNG J C. Investigation of the stress singularity of a magnetoelectroelastic bonded antiplane wedge[J]. Applied Mathematical Modelling, 2007, 31(10): 2313-2331. doi: 10.1016/j.apm.2006.09.003
    [31] LIU T J C. The singularity problem of the magneto-electro-elastic wedge-junction structure with consideration of the air effect[J]. Archive of Applied Mechanics, 2009, 79(5): 377-393. doi: 10.1007/s00419-008-0240-7
    [32] ZHOU Z H, XU X S, LEUNG A Y T. Hamiltonian analysis of a magnetoelectroelastic notch in a mode Ⅲ singularity[J]. Smart Materials and Structures, 2013, 22(9): 095018. doi: 10.1088/0964-1726/22/9/095018
    [33] 程长征, 丁昊, 王大鹏, 等. 磁电弹材料反平面切口奇性数值分析[J]. 中国科学: 物理学力学天文学, 2014, 44(1): 91-99.

    CHENG Changzheng, DING Hao, WANG Dapeng, et al. Numerical analysis of the singularities for a magneto-electroelastic notch under anti-plane deformation[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(1): 91-99. (in Chinese)
    [34] YANG Y Y, CHENG C Z, YAO S L, et al. Singularity analysis for the V-notch in functionally graded piezoelectric/piezomagnetic material[J]. Journal of Engineering Mathematics, 2021, 132(1): 17.
    [35] CHEN C D, CHUE C H. Singular electro-mechanical fields near the apex of a piezoelectric bonded wedge under antiplane shear[J]. International Journal of Solids and Structures, 2003, 40(23): 6513-6526. doi: 10.1016/S0020-7683(03)00415-3
    [36] ALSHITS V I, DARINSKII A N, LOTHE J. On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric andpiezomagnetic properties[J]. Wave Motion, 1992, 16(3): 265-283. doi: 10.1016/0165-2125(92)90033-X
    [37] NAN C W, CAI N, SHI Z, et al. Large magnetoelectric response in multiferroic polymer-based composites[J]. Physical Review B: Condensed Matter and Materials Physics, 2005, 71: 014102. doi: 10.1103/PhysRevB.71.014102
    [38] KUO H Y, SLINGER A, BHATTACHARYA K. Optimization of magnetoelectricity in piezoelectric-magnetostrictive bilayers[J]. Smart Materials and Structures, 2010, 19(12): 125010. doi: 10.1088/0964-1726/19/12/125010
    [39] PATIL D R, CHAI Y, JEON B G, et al. Theoretical prediction of resonant and off-resonant magnetoelectric coupling in layered composites with anisotropic piezoelectric properties[J]. Composite Structures, 2017, 159: 498-504. doi: 10.1016/j.compstruct.2016.09.053
    [40] WANG H L, LIU B. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design[J]. Journal of Applied Physics, 2014, 115(11): 114904. doi: 10.1063/1.4868516
    [41] LEUNG C M, ZHUANG X, XU J, et al. Importance of composite parameters in enhanced power conversion efficiency of Terfenol-D/PZT magnetoelectric gyrators[J]. Applied Physics Letters, 2017, 110(11): 112904. doi: 10.1063/1.4978751
    [42] CHUE C H, CHEN C D. Antiplane stress singularities in a bonded bimaterial piezoelectric wedge[J]. Archive of Applied Mechanics, 2003, 72(9): 673-685. doi: 10.1007/s00419-002-0241-x
    [43] RAMIREZ F, HEYLIGER P R, PAN E. Free vibration response of two-dimensional magneto-electro-elastic laminated plates[J]. Journal of Sound and Vibration, 2006, 292(3/4/5): 626-644.
    [44] JIANG S N, JIANG Q, LI X F, et al. Piezoelectromagnetic waves in a ceramic plate between two ceramic half-spaces[J]. International Journal of Solids and Structures, 2006, 43(18/19): 5799-5810.
    [45] JARNG S S. Magnetostrictive Terfenol-D material linear simulation using finite element method[J]. International Journal of Applied Electromagnetics and Mechanics, 2006, 24(3/4): 187-193.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  64
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-06
  • 修回日期:  2024-09-25
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回