Analysis and Numerical Simulation of Bird Impact Damages of 3-Side-Clamped Titanium Alloy Blades
-
摘要: 鸟撞发动机风扇叶片对飞机的危害性极大.为了研究叶片受鸟撞的损伤,以某型发动机风扇叶片为基础,设计夹具将叶片紧固,进行两组鸟撞叶片试验得到叶片的损伤结果.试验后使用LS-DYNA软件通过数值模拟方法对试验结果进行验证.以试验为基础建立鸟撞三边夹持叶片模型,研究四种影响叶片损伤结果的撞击工况对叶片损伤的影响.结果表明:试验工况对叶片损伤的影响根本上是鸟体传递给叶片能量的改变.随着传递能量的增大,叶片的损伤将由鼓包变为裂缝直至最后破损.通过研究叶片损伤发现在特定工况中鸟撞三边夹持叶片试验可以有效模拟部分鸟撞旋转叶片的试验.Abstract: The damages caused by bird impacts on engine fan blades in aircraft is extremely serious. To study these damages to the blades, an experiment was conducted based on a certain type of engine fan blade clamped by fixtures on 3 sides. Then 2 groups of bird-blade impact tests were completed, and the results of blade damages were obtained. Simultaneously, the LS-DYNA software was used to numerically verify the experimental results. A 3-side-clamped blade model for bird impact was established based on the experiment to study the effects of 4 impact conditions on blade damages. The results indicate that, the effects of experimental conditions on blade damages are fundamentally due to the energy changes transmitted from the bird body to the blade. As the transmitted energy increases, the damage to the blade will change from a bulge to a crack until finally rupture. Through the study of the damages to the blade in specific impact conditions, the 3-side-clamped blade-bird impact test can effectively simulate a part of the tests on bird impacts on rotating blades.
-
Key words:
- fan blade /
- bird impact /
- numerical simulation /
- smoothed particle hydrodynamics /
- blade damage
edited-byedited-by1) (我刊编委陈伟来稿) -
表 1 试验工况
Table 1. Test conditions
experimental group bird type mass/g bird body length/mm bird body diameter/mm velocity/(m/s) Ⅰ gelatin bird 60.1 68 34 182 Ⅱ supported gelatin bird 27.4 51.2 25.6 274 表 2 试验后叶片损伤
Table 2. Damages to the blade after the tests
test group number damage type damage size Ⅰ bulge 1) bulge length 51 mm
2) bulge depth 10.5 mmⅡ crack 3) the 1st crack length 35 mm
4) the 2nd crack length 13 mm表 3 变量含义
Table 3. The meanings of variables
variable meaning A,B material related constants n strain hardening influence coefficient C strain rate influence coefficient m temperature influence coefficient γ equivalent plastic strain $ \dot{\varepsilon}^*$ relative equivalent plastic deformation rate T* dimensionless temperature 表 4 TC4叶片JC模型参数
Table 4. The JC model parameters of blade TC4
material parameter numerical value material parameter numerical value density/(kg/m3) 4 440 D2 0.27 shear modulus/GPa 42.9 D3 0.48 elastic modulus/GPa 115 D4 0.014 Poisson’s ratio 0.34 D5 3.86 A/MPa 950 C/(m/s) 5 130 B/MPa 1 080 S1 1.028 N 0.34 S2 0 C 0.018 2 S3 0 M 0.767 γ0 1.23 D1 -0.05 A 0.17 表 5 明胶鸟材料参数
Table 5. Material parameters of the gelatin bird
material parameter numerical value density/(kg/m3) 950 yield stress/Pa 20 000 shear modulus/GPa 2 表 6 骨架材料参数
Table 6. Material parameters of the skeleton
material parameter numerical value density/(kg/m3) 1 300 elastic modulus/GPa 2.6 Poisson’s ratio 0.42 yield stress/MPa 38 tangent modulus/MPa 655 表 7 40Cr材料参数
Table 7. Material parameters of 40Cr
material parameter numerical value density/(kg/m3) 7 830 elastic modulus/GPa 209 Poisson’s ratio 0.3 yield stress/MPa 835 tangent modulus/MPa 980 表 8 数值模拟叶片损伤
Table 8. Blade damages in numerical simulation
test group number damage type damage size Ⅰ bulge 1) bulge length 53 mm
2) bulge depth 11 mmⅡ crack 3) the 1st crack length 41 mm
4) the 2nd crack length 15 mm表 9 数值模拟误差
Table 9. Numerical simulation errors
damage size 1 2 3 4 experiment/mm 51 10.5 35 13 numerical simulation/mm 53 11 41 15 error value/% 3.9 4.8 17.1 15.4 表 10 变鸟速叶片损伤及尺寸
Table 10. Damages and sizes of blades changing with the speed
bird velocity/(m/s) damage form size 200 bulge bulge length 51.9 mm, depth 10.6 mm 225 bulge bulge length 50 mm, depth 13 mm 250 cracked bulge bulge length 52 mm, depth 15 mm 275 cracked bulge bulge length 52 mm, depth 17 mm 300 crack crack length 6.2 mm 325 crack crack length 16 mm 表 11 叶片损伤形式与能量的关系
Table 11. The relationship between blade damage forms and energy values
energy/J damage form 0~190 bulge 190~350 cracked bulge above 350 crack -
[1] 陈伟, 高德平, 尹晶. 航空发动机叶片的鸟撞击损伤研究[J]. 燃气涡轮试验与研究, 1998, 11(4): 34-39.CHEN Wei, GAO Deping, YIN Jing. Research on bird impact damage of aircraft engine blades[J]. Gas Turbine Experiment and Research, 1998, 11(4): 34-39. (in Chinese) [2] 陈光. 飞机发动机的防鸟撞设计与试验[J]. 国际航空, 2009(11): 63-65.CHEN Guang. Prevention of bird strike hazards to aero-engines[J]. International Aviation, 2009(11): 63-65. (in Chinese) [3] HOU N, LI Y, LIU J. Numerical simulation of bird impact on hollow blades of titanium fan assembly [J]. Journal of Aerospace Engineering, 2019, 32(4): 04019044. doi: 10.1061/(ASCE)AS.1943-5525.0001024 [4] WILBECK J S, REIMANE W. Impact behaviour low strength projectiles[R]. AFML, 1978. [5] WILBECK J S, BARBER J P. Bird impact loading[J]. The Shock and Vibration Bulletin, 1978, 48(20): 115-122. [6] BARBER J S, WILBECK J S, TAYLOR H R. Bird impact forces and pressures on rigid and compliant target: technical report AFFDL-TR-77-60[R]. Ohio: University of Dayton Research Institute, 1978. [7] BARBER J P, TAYLOR H R, WILBECK J S. Characterization of bird impact on a rigid plate: part Ⅰ: technical report AFFDL-TR-75-5[R]. Dayton: Dayton University, 1975. [8] 尹晶, 高德平, 范尔宁. 鸟撞击叶片时的载荷模型[J]. 航空动力学报, 1993, 8(4): 363-367.YIN Jing, GAO Deping, FAN Erning. Loading models for bird impacting on blades[J]. Journal of Aerospace Power, 1993, 8(4): 363-367. (in Chinese) [9] 王斌, 宁宇, 刘军, 等. 发动机一级转子抗鸟撞试验与数值模拟研究[J]. 航空工程进展, 2024, 15(2): 117-124.WANG Bin, NING Yu, LIU Jun, et al. Experiment and numerical simulation on bird strike with blades of an engine primary compressor[J]. Advances in Aeronautical Science and Engineering, 2024, 15(2): 117-124. (in Chinese) [10] MEGUID S A, MAO R H, NG T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade[J]. International Journal of Impact Engineering, 2008, 35(6): 487-498. doi: 10.1016/j.ijimpeng.2007.04.008 [11] RICHARD B. The development of a substitute artificial bird by the international birdstrike research group for use in aircraft component testing[C]//International Bird Strike Committee 25. Amsterdam, 2000. [12] 黄福增, 刘永泉, 张东明, 等. 发动机风扇转子旋转状态下鸟撞试验研究[J]. 实验力学, 2020, 35 (6): 1136-1146.HUANG Fuzeng, LIU Yongquan, ZHANG Dongming, et al. Investigation on bird-strike test of gas turbine rotating fan blade[J]. Journal of Experimental Mechanics, 2020, 35(6): 1136-1146. (in Chinese) [13] 张海洋, 蔚夺魁, 王相平, 等. 鸟撞击风扇转子叶片损伤模拟与试验研究[J]. 推进技术, 2015, 36 (9): 1382-1388.ZHANG Haiyang, YU Duokui, WANG Xiangping, et al. Numerical and experimental investigation of damage of bird impact on fan blades[J]. Journal of Propulsion Technology, 2015, 36(9): 1382-1388. (in Chinese) [14] 张永强, 贾林. TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效[J]. 高压物理学报, 2022, 36(5): 77-87.ZHANG Yongqiang, JIA Lin. Dynamic response and damage failure behavior of TC4 titanium alloy hollow fan blade[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 77-87. (in Chinese) [15] 贾林, 李从富, 邹学韬, 等. 鸟撞冲击下TC4钛合金平板的变形和破坏[J]. 高压物理学报, 2020, 34 (4): 59-68.JIA Lin, LI Congfu, ZOU Xuetao, et al. Deformation and destruction of TC4 titanium alloy plate under the bird impact[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 59-68. (in Chinese) [16] 曹琬婷. 钛合金叶片鸟撞击动态响应及损伤工程评估方法研究[D]. 南京: 南京航空航天大学, 2022.CAO Wanting. Dynamic response and damage engineering evaluation method study of titanium alloy blade under bird impact[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. (in Chinese) [17] 马明瑞, 陈福振, 严红, 等. 基于多分辨率SPH-FEM耦合方法的鸟撞问题数值模拟[J]. 航空学报, 2024, 45(21): 251-271.MA Mingrui, CHEN Fuzhen, YAN Hong, et al. Numerical simulation of bird strike problem based on multi-resolution SPH-FEM coupling method[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 251-271. (in Chinese) [18] CERQUAGLIA M, DELIÉGE G, BOMAN R, et al. Reprint of: the particle finite element method for the numerical simulation of bird strike[J]. International Journal of Impact Engineering, 2017, 110: 72-84. doi: 10.1016/j.ijimpeng.2017.09.002 [19] 汪松柏, 牛潇, 霍嘉欣, 等. 航空发动机风扇转子叶片抗鸟撞改进设计[J]. 航空动力学报, 2024, 39(2): 91-99.WANG Songbai, NIU Xiao, HUO Jiaxin, et al. Improved design for anti-bird impact of aero-engine fan rotor blades[J]. Journal of Aerospace Power, 2024, 39(2): 91-99. (in Chinese) [20] ZHANG Z, LI L, ZHANG D. Effect of arbitrary yaw/pitch angle in bird strike numerical simulation using SPH method[J]. Aerospace Science and Technology, 2018, 81: 284-293. doi: 10.1016/j.ast.2018.08.010 [21] 李国举, 王宪, 尹莉萍, 等. 钛合金风扇叶片抗鸟撞动态力学响应仿真[J]. 中国新技术新产品, 2023(11): 13- 15.LI Guoju, WANG Xian, YIN Liping, et al. Simulation of dynamic mechanical response of titanium alloy fan blades against bird impact[J]. New Technology & New Products of China, 2023(11): 13-15. (in Chinese) [22] 姜凯, 陈伟, 韩佳奇, 等. 鸟撞发动机整机响应显式-隐式仿真[J]. 航空发动机, 2023, 49(1): 109-114.JIANG Kai, CHEN Wei, HAN Jiaqi, et al. Explicit-implicit simulation of engine response under bird impact[J]. Aeroengine, 2023, 49(1): 109-114. (in Chinese) [23] LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird's substitute tests results and evaluation of available numerical methods[J]. International Journal of Impact Engineering, 2009, 36(10/11): 1276- 1287. [24] 单斌. 基于刚性靶冲击试验的人工鸟材料参数识别研究[D]. 南京: 南京航空航天大学, 2014.SHAN Bin. Study on identification of artificial bird's material parameter based on rigid target impact test[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese) [25] LUO Gang, ZHANG Fengqi, XU Ziming, et al. Internal reinforcement mechanisms for gelatin bird projectiles for artificial bird impact tests[J]. Mechanics of Advanced Materials and Structures, 2023, 30(15): 3075-3085. doi: 10.1080/15376494.2022.2068208 [26] LUO Gang, XU Ziming, SHEN Haitao, et al. Experimental study on the impact load of internally supported gelatin bird projectiles[J]. Engineering Failure Analysis, 2021, 124: 105336. doi: 10.1016/j.engfailanal.2021.105336 [27] LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Validation of available approaches for numerical bird strike modeling tools[J]. International Review of Mechanical Engineering, 2007, 1(4): 380-389. [28] 郑伟, 王硕, 黄小娴. TC4钛合金的力学性能分析和本构模型的构建[J]. 山东建筑大学学报, 2024, 39(3): 76-82.ZHENG Wei, WANG Shuo, HUANG Xiaoxian. Mechanics property analysis and constitutive model construction of TC4 titanium alloy[J]. Journal of Shandong Jianzhu University, 2024, 39(3): 76-82. (in Chinese) [29] 吴小燕, 苏超群, 汤洋, 等. 激光冲击TC4钛合金材料本构模型参数的修正方法[J]. 机械工程与自动化, 2024(2): 64-65.WU Xiaoyan, SU Chaoqun, TANG Yang, et al. Parameter modification method for material constitutive model of laser shock TC4 titanium alloy[J]. Mechanical Engineering & Automation, 2024(2): 64-65. (in Chinese) [30] 廖宇, 钟贵勇, 舒茂盛, 等. 激光增材制造金属材料疲劳寿命研究[J]. 应用数学和力学, 2023, 44 (2): 201-208. doi: 10.21656/1000-0887.430319LIAO Yu, ZHONG Guiyong, SHU Maosheng, et al. A study on the fatigue life of the laser additive manufactured metallic material[J]. Applied Mathematics and Mechanics, 2023, 44(2): 201-208. (in Chinese) doi: 10.21656/1000-0887.430319 [31] 范亚杰, 李燕, 李中潘, 等. 接触与大变形问题的光滑有限元分析[J]. 应用数学和力学, 2024, 45 (2): 127-143. doi: 10.21656/1000-0887.440251FAN Yajie, LI Yan, LI Zhongpan, et al. Smoothed finite element analysis of contact and large deformation problems[J]. Applied Mathematics and Mechanics, 2024, 45(2): 127-143. (in Chinese) doi: 10.21656/1000-0887.440251 -
下载:
渝公网安备50010802005915号