留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三边夹持下钛合金叶片鸟撞损伤分析和数值模拟研究

王伟灿 罗刚 赵朝君 范兴超 陈伟

王伟灿, 罗刚, 赵朝君, 范兴超, 陈伟. 三边夹持下钛合金叶片鸟撞损伤分析和数值模拟研究[J]. 应用数学和力学, 2025, 46(10): 1267-1284. doi: 10.21656/1000-0887.450242
引用本文: 王伟灿, 罗刚, 赵朝君, 范兴超, 陈伟. 三边夹持下钛合金叶片鸟撞损伤分析和数值模拟研究[J]. 应用数学和力学, 2025, 46(10): 1267-1284. doi: 10.21656/1000-0887.450242
WANG Weican, LUO Gang, ZHAO Chaojun, FAN Xingchao, CHEN Wei. Analysis and Numerical Simulation of Bird Impact Damages of 3-Side-Clamped Titanium Alloy Blades[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1267-1284. doi: 10.21656/1000-0887.450242
Citation: WANG Weican, LUO Gang, ZHAO Chaojun, FAN Xingchao, CHEN Wei. Analysis and Numerical Simulation of Bird Impact Damages of 3-Side-Clamped Titanium Alloy Blades[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1267-1284. doi: 10.21656/1000-0887.450242

三边夹持下钛合金叶片鸟撞损伤分析和数值模拟研究

doi: 10.21656/1000-0887.450242
(我刊编委陈伟来稿)
基金项目: 

国家科技重大专项 2017-Ⅳ-0006-0043

详细信息
    作者简介:

    王伟灿(2000—),男,硕士(E-mail: WWCNUAA@nuaa.edu.cn)

    通讯作者:

    罗刚(1980—),男,实验师,博士(通讯作者. E-mail: luogang@nuaa.edu.cn)

  • 中图分类号: V232.4

Analysis and Numerical Simulation of Bird Impact Damages of 3-Side-Clamped Titanium Alloy Blades

(Contributed by CHEN Wei, M.AMM Editorial Board)
  • 摘要: 鸟撞发动机风扇叶片对飞机的危害性极大.为了研究叶片受鸟撞的损伤,以某型发动机风扇叶片为基础,设计夹具将叶片紧固,进行两组鸟撞叶片试验得到叶片的损伤结果.试验后使用LS-DYNA软件通过数值模拟方法对试验结果进行验证.以试验为基础建立鸟撞三边夹持叶片模型,研究四种影响叶片损伤结果的撞击工况对叶片损伤的影响.结果表明:试验工况对叶片损伤的影响根本上是鸟体传递给叶片能量的改变.随着传递能量的增大,叶片的损伤将由鼓包变为裂缝直至最后破损.通过研究叶片损伤发现在特定工况中鸟撞三边夹持叶片试验可以有效模拟部分鸟撞旋转叶片的试验.
    1)  (我刊编委陈伟来稿)
  • 图  1  叶片示意图

    Figure  1.  Photos of the blades

    图  2  夹具模型

    Figure  2.  The fixture model

    图  3  叶片夹具装配图

    Figure  3.  Assembly drawing of blade and fixtures

    图  4  试验设备

    Figure  4.  The equipment

    图  5  试验用明胶鸟

    Figure  5.  Gelatin bird used in the test

    图  6  高速摄影设备

    Figure  6.  The high-speed camera

    图  7  第Ⅰ组试验鸟体冲击过程

    Figure  7.  The impact process of the bird body in experiment group Ⅰ

    图  8  第Ⅰ组试验后叶片损伤图

    Figure  8.  Blade damage images after experiment group Ⅰ

    图  9  第Ⅱ组试验鸟体冲击过程

    Figure  9.  The impact process of the bird body in experiment group Ⅱ

    图  10  第Ⅱ组试验后叶片损伤图

    Figure  10.  Blade damage images after experiment group Ⅱ

    图  11  有限元模型

    Figure  11.  The finite element model

    图  12  第Ⅰ组试验数值模拟叶片损伤

    Figure  12.  Blade damages in numerical simulation for experiment group Ⅰ

    图  13  试验Ⅰ受撞击面表面等效应力演变过程(等效应力单位: Pa)

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  13.  The evolution process of equivalent stresses on the impact surface in experiment Ⅰ(effective stress unit: Pa)

    图  14  第Ⅰ组试验叶片和鸟体能量变化

    Figure  14.  Energy changes of blades and bird bodies in experiment group Ⅰ

    图  15  第Ⅱ组试验数值模拟的叶片损伤

    Figure  15.  Blade damages in numerical simulation for experiment group Ⅱ

    图  16  试验Ⅱ受撞击面表面等效应力演变过程(等效应力单位: Pa)

    Figure  16.  The evolution process of equivalent stresses on the impact surface in experiment Ⅱ(effective stress unit: Pa)

    图  17  第Ⅱ组试验叶片和鸟体能量变化

    Figure  17.  Energy changes of blades and bird bodies in experiment group Ⅱ

    图  18  鸟体撞击位置

    Figure  18.  Positions of bird body impacts

    图  19  叶片鸟撞击损伤3种典型形式

    Figure  19.  The 3 typical forms of blade-bird impact damages

    图  20  叶片鼓包尺寸随撞击角度θ的变化

    Figure  20.  The blade bulge size changing with angle θ

    图  21  叶片鼓包尺寸随位置d的变化

    Figure  21.  The blade bulge size changing with position d

    图  22  叶片鼓包尺寸随鸟体质量q的变化

    Figure  22.  22 The blade bulge size changing with gelatin bird mass q

    图  23  四种工况下的能量

    Figure  23.  Energy histograms in 4 operating conditions

    表  1  试验工况

    Table  1.   Test conditions

    experimental group bird type mass/g bird body length/mm bird body diameter/mm velocity/(m/s)
    gelatin bird 60.1 68 34 182
    supported gelatin bird 27.4 51.2 25.6 274
    下载: 导出CSV

    表  2  试验后叶片损伤

    Table  2.   Damages to the blade after the tests

    test group number damage type damage size
    bulge 1) bulge length 51 mm
    2) bulge depth 10.5 mm
    crack 3) the 1st crack length 35 mm
    4) the 2nd crack length 13 mm
    下载: 导出CSV

    表  3  变量含义

    Table  3.   The meanings of variables

    variable meaning
    AB material related constants
    n strain hardening influence coefficient
    C strain rate influence coefficient
    m temperature influence coefficient
    γ equivalent plastic strain
    $ \dot{\varepsilon}^*$ relative equivalent plastic deformation rate
    T* dimensionless temperature
    下载: 导出CSV

    表  4  TC4叶片JC模型参数

    Table  4.   The JC model parameters of blade TC4

    material parameter numerical value material parameter numerical value
    density/(kg/m3) 4 440 D2 0.27
    shear modulus/GPa 42.9 D3 0.48
    elastic modulus/GPa 115 D4 0.014
    Poisson’s ratio 0.34 D5 3.86
    A/MPa 950 C/(m/s) 5 130
    B/MPa 1 080 S1 1.028
    N 0.34 S2 0
    C 0.018 2 S3 0
    M 0.767 γ0 1.23
    D1 -0.05 A 0.17
    下载: 导出CSV

    表  5  明胶鸟材料参数

    Table  5.   Material parameters of the gelatin bird

    material parameter numerical value
    density/(kg/m3) 950
    yield stress/Pa 20 000
    shear modulus/GPa 2
    下载: 导出CSV

    表  6  骨架材料参数

    Table  6.   Material parameters of the skeleton

    material parameter numerical value
    density/(kg/m3) 1 300
    elastic modulus/GPa 2.6
    Poisson’s ratio 0.42
    yield stress/MPa 38
    tangent modulus/MPa 655
    下载: 导出CSV

    表  7  40Cr材料参数

    Table  7.   Material parameters of 40Cr

    material parameter numerical value
    density/(kg/m3) 7 830
    elastic modulus/GPa 209
    Poisson’s ratio 0.3
    yield stress/MPa 835
    tangent modulus/MPa 980
    下载: 导出CSV

    表  8  数值模拟叶片损伤

    Table  8.   Blade damages in numerical simulation

    test group number damage type damage size
    bulge 1) bulge length 53 mm
    2) bulge depth 11 mm
    crack 3) the 1st crack length 41 mm
    4) the 2nd crack length 15 mm
    下载: 导出CSV

    表  9  数值模拟误差

    Table  9.   Numerical simulation errors

    damage size 1 2 3 4
    experiment/mm 51 10.5 35 13
    numerical simulation/mm 53 11 41 15
    error value/% 3.9 4.8 17.1 15.4
    下载: 导出CSV

    表  10  变鸟速叶片损伤及尺寸

    Table  10.   Damages and sizes of blades changing with the speed

    bird velocity/(m/s) damage form size
    200 bulge bulge length 51.9 mm, depth 10.6 mm
    225 bulge bulge length 50 mm, depth 13 mm
    250 cracked bulge bulge length 52 mm, depth 15 mm
    275 cracked bulge bulge length 52 mm, depth 17 mm
    300 crack crack length 6.2 mm
    325 crack crack length 16 mm
    下载: 导出CSV

    表  11  叶片损伤形式与能量的关系

    Table  11.   The relationship between blade damage forms and energy values

    energy/J damage form
    0~190 bulge
    190~350 cracked bulge
    above 350 crack
    下载: 导出CSV
  • [1] 陈伟, 高德平, 尹晶. 航空发动机叶片的鸟撞击损伤研究[J]. 燃气涡轮试验与研究, 1998, 11(4): 34-39.

    CHEN Wei, GAO Deping, YIN Jing. Research on bird impact damage of aircraft engine blades[J]. Gas Turbine Experiment and Research, 1998, 11(4): 34-39. (in Chinese)
    [2] 陈光. 飞机发动机的防鸟撞设计与试验[J]. 国际航空, 2009(11): 63-65.

    CHEN Guang. Prevention of bird strike hazards to aero-engines[J]. International Aviation, 2009(11): 63-65. (in Chinese)
    [3] HOU N, LI Y, LIU J. Numerical simulation of bird impact on hollow blades of titanium fan assembly [J]. Journal of Aerospace Engineering, 2019, 32(4): 04019044. doi: 10.1061/(ASCE)AS.1943-5525.0001024
    [4] WILBECK J S, REIMANE W. Impact behaviour low strength projectiles[R]. AFML, 1978.
    [5] WILBECK J S, BARBER J P. Bird impact loading[J]. The Shock and Vibration Bulletin, 1978, 48(20): 115-122.
    [6] BARBER J S, WILBECK J S, TAYLOR H R. Bird impact forces and pressures on rigid and compliant target: technical report AFFDL-TR-77-60[R]. Ohio: University of Dayton Research Institute, 1978.
    [7] BARBER J P, TAYLOR H R, WILBECK J S. Characterization of bird impact on a rigid plate: part Ⅰ: technical report AFFDL-TR-75-5[R]. Dayton: Dayton University, 1975.
    [8] 尹晶, 高德平, 范尔宁. 鸟撞击叶片时的载荷模型[J]. 航空动力学报, 1993, 8(4): 363-367.

    YIN Jing, GAO Deping, FAN Erning. Loading models for bird impacting on blades[J]. Journal of Aerospace Power, 1993, 8(4): 363-367. (in Chinese)
    [9] 王斌, 宁宇, 刘军, 等. 发动机一级转子抗鸟撞试验与数值模拟研究[J]. 航空工程进展, 2024, 15(2): 117-124.

    WANG Bin, NING Yu, LIU Jun, et al. Experiment and numerical simulation on bird strike with blades of an engine primary compressor[J]. Advances in Aeronautical Science and Engineering, 2024, 15(2): 117-124. (in Chinese)
    [10] MEGUID S A, MAO R H, NG T Y. FE analysis of geometry effects of an artificial bird striking an aeroengine fan blade[J]. International Journal of Impact Engineering, 2008, 35(6): 487-498. doi: 10.1016/j.ijimpeng.2007.04.008
    [11] RICHARD B. The development of a substitute artificial bird by the international birdstrike research group for use in aircraft component testing[C]//International Bird Strike Committee 25. Amsterdam, 2000.
    [12] 黄福增, 刘永泉, 张东明, 等. 发动机风扇转子旋转状态下鸟撞试验研究[J]. 实验力学, 2020, 35 (6): 1136-1146.

    HUANG Fuzeng, LIU Yongquan, ZHANG Dongming, et al. Investigation on bird-strike test of gas turbine rotating fan blade[J]. Journal of Experimental Mechanics, 2020, 35(6): 1136-1146. (in Chinese)
    [13] 张海洋, 蔚夺魁, 王相平, 等. 鸟撞击风扇转子叶片损伤模拟与试验研究[J]. 推进技术, 2015, 36 (9): 1382-1388.

    ZHANG Haiyang, YU Duokui, WANG Xiangping, et al. Numerical and experimental investigation of damage of bird impact on fan blades[J]. Journal of Propulsion Technology, 2015, 36(9): 1382-1388. (in Chinese)
    [14] 张永强, 贾林. TC4钛合金空心结构风扇叶片的鸟撞动力学响应及损伤失效[J]. 高压物理学报, 2022, 36(5): 77-87.

    ZHANG Yongqiang, JIA Lin. Dynamic response and damage failure behavior of TC4 titanium alloy hollow fan blade[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 77-87. (in Chinese)
    [15] 贾林, 李从富, 邹学韬, 等. 鸟撞冲击下TC4钛合金平板的变形和破坏[J]. 高压物理学报, 2020, 34 (4): 59-68.

    JIA Lin, LI Congfu, ZOU Xuetao, et al. Deformation and destruction of TC4 titanium alloy plate under the bird impact[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 59-68. (in Chinese)
    [16] 曹琬婷. 钛合金叶片鸟撞击动态响应及损伤工程评估方法研究[D]. 南京: 南京航空航天大学, 2022.

    CAO Wanting. Dynamic response and damage engineering evaluation method study of titanium alloy blade under bird impact[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. (in Chinese)
    [17] 马明瑞, 陈福振, 严红, 等. 基于多分辨率SPH-FEM耦合方法的鸟撞问题数值模拟[J]. 航空学报, 2024, 45(21): 251-271.

    MA Mingrui, CHEN Fuzhen, YAN Hong, et al. Numerical simulation of bird strike problem based on multi-resolution SPH-FEM coupling method[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 251-271. (in Chinese)
    [18] CERQUAGLIA M, DELIÉGE G, BOMAN R, et al. Reprint of: the particle finite element method for the numerical simulation of bird strike[J]. International Journal of Impact Engineering, 2017, 110: 72-84. doi: 10.1016/j.ijimpeng.2017.09.002
    [19] 汪松柏, 牛潇, 霍嘉欣, 等. 航空发动机风扇转子叶片抗鸟撞改进设计[J]. 航空动力学报, 2024, 39(2): 91-99.

    WANG Songbai, NIU Xiao, HUO Jiaxin, et al. Improved design for anti-bird impact of aero-engine fan rotor blades[J]. Journal of Aerospace Power, 2024, 39(2): 91-99. (in Chinese)
    [20] ZHANG Z, LI L, ZHANG D. Effect of arbitrary yaw/pitch angle in bird strike numerical simulation using SPH method[J]. Aerospace Science and Technology, 2018, 81: 284-293. doi: 10.1016/j.ast.2018.08.010
    [21] 李国举, 王宪, 尹莉萍, 等. 钛合金风扇叶片抗鸟撞动态力学响应仿真[J]. 中国新技术新产品, 2023(11): 13- 15.

    LI Guoju, WANG Xian, YIN Liping, et al. Simulation of dynamic mechanical response of titanium alloy fan blades against bird impact[J]. New Technology & New Products of China, 2023(11): 13-15. (in Chinese)
    [22] 姜凯, 陈伟, 韩佳奇, 等. 鸟撞发动机整机响应显式-隐式仿真[J]. 航空发动机, 2023, 49(1): 109-114.

    JIANG Kai, CHEN Wei, HAN Jiaqi, et al. Explicit-implicit simulation of engine response under bird impact[J]. Aeroengine, 2023, 49(1): 109-114. (in Chinese)
    [23] LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Bird's substitute tests results and evaluation of available numerical methods[J]. International Journal of Impact Engineering, 2009, 36(10/11): 1276- 1287.
    [24] 单斌. 基于刚性靶冲击试验的人工鸟材料参数识别研究[D]. 南京: 南京航空航天大学, 2014.

    SHAN Bin. Study on identification of artificial bird's material parameter based on rigid target impact test[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
    [25] LUO Gang, ZHANG Fengqi, XU Ziming, et al. Internal reinforcement mechanisms for gelatin bird projectiles for artificial bird impact tests[J]. Mechanics of Advanced Materials and Structures, 2023, 30(15): 3075-3085. doi: 10.1080/15376494.2022.2068208
    [26] LUO Gang, XU Ziming, SHEN Haitao, et al. Experimental study on the impact load of internally supported gelatin bird projectiles[J]. Engineering Failure Analysis, 2021, 124: 105336. doi: 10.1016/j.engfailanal.2021.105336
    [27] LAVOIE M A, GAKWAYA A, ENSAN M N, et al. Validation of available approaches for numerical bird strike modeling tools[J]. International Review of Mechanical Engineering, 2007, 1(4): 380-389.
    [28] 郑伟, 王硕, 黄小娴. TC4钛合金的力学性能分析和本构模型的构建[J]. 山东建筑大学学报, 2024, 39(3): 76-82.

    ZHENG Wei, WANG Shuo, HUANG Xiaoxian. Mechanics property analysis and constitutive model construction of TC4 titanium alloy[J]. Journal of Shandong Jianzhu University, 2024, 39(3): 76-82. (in Chinese)
    [29] 吴小燕, 苏超群, 汤洋, 等. 激光冲击TC4钛合金材料本构模型参数的修正方法[J]. 机械工程与自动化, 2024(2): 64-65.

    WU Xiaoyan, SU Chaoqun, TANG Yang, et al. Parameter modification method for material constitutive model of laser shock TC4 titanium alloy[J]. Mechanical Engineering & Automation, 2024(2): 64-65. (in Chinese)
    [30] 廖宇, 钟贵勇, 舒茂盛, 等. 激光增材制造金属材料疲劳寿命研究[J]. 应用数学和力学, 2023, 44 (2): 201-208. doi: 10.21656/1000-0887.430319

    LIAO Yu, ZHONG Guiyong, SHU Maosheng, et al. A study on the fatigue life of the laser additive manufactured metallic material[J]. Applied Mathematics and Mechanics, 2023, 44(2): 201-208. (in Chinese) doi: 10.21656/1000-0887.430319
    [31] 范亚杰, 李燕, 李中潘, 等. 接触与大变形问题的光滑有限元分析[J]. 应用数学和力学, 2024, 45 (2): 127-143. doi: 10.21656/1000-0887.440251

    FAN Yajie, LI Yan, LI Zhongpan, et al. Smoothed finite element analysis of contact and large deformation problems[J]. Applied Mathematics and Mechanics, 2024, 45(2): 127-143. (in Chinese) doi: 10.21656/1000-0887.440251
  • 加载中
图(23) / 表(11)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  27
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-03
  • 修回日期:  2024-10-07
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回