Dynamics of a Tri-Stable Energy Harvesting System With Time-Delay Feedback Under Narrow-Band Random Excitation
edited-by
edited-by
(Contributed by SUN Zhongkui, M.AMM Youth Editorial Board)-
摘要: 提出了一种窄带随机激励下具有时滞反馈控制的三稳态能量采集器. 首先,利用多尺度方法得到了能量采集系统在主共振附近的稳态响应. 然后, 采用矩方法推导出了系统的一阶与二阶非平凡稳态矩, 并通过Monte-Carlo仿真验证了其准确性. 最后, 基于上述稳态响应矩, 探讨了系统参数对能量采集性能的影响. 研究结果表明:非线性刚度系数的增加可以扩大能量采集系统的工作带宽, 窄带随机激励强度的增加可以使能量采集系统的输出电压增大, 压电耦合项的增加将导致振幅的二阶稳态矩减小, 进而有利于实现能量采集器的小型化设计. 此外, 当控制反馈增益为负值时,既有利于实现能量采集器的小型化设计,又能有效地增大系统的功率输出. 相关结果可为进一步探索和优化能量采集系统提供一定的理论参考.Abstract: A tri-stable energy harvester with time-delay feedback control under narrow-band random excitation was proposed. The steady-state responses of the energy harvesting system near the main resonance were obtained with the multi-scale method. Moreover, the 1st-order and 2nd-order nontrivial steady-state moments of the system were derived with the moment method, and their accuracy was also verified through the Monte Carlo simulations. Based on the above steady-state response moments, the effects of system parameters on the performances of the energy harvester were discussed in detail. The results show that, increasing the nonlinear stiffness coefficient can enlarge the working bandwidth of the energy harvester system, while increasing the narrowband random excitation intensity can enhance the output voltage of the energy harvester. The 2nd-order steady-state moments visibly decrease with the piezoelectric coupling term, which indicates that a larger piezoelectric coupling term is beneficial to the miniaturization of energy harvesters. Furthermore, a negative control feedback gain is beneficial to realize the miniaturization design of the energy harvester and increase the power output of the system effectively. The findings provide a theoretical basis for further exploration and optimization of energy harvesting systems.
-
Key words:
- nonlinear dynamics /
- tri-stable piezoelectric energy harvester /
- time delay feedback /
- random excitation
edited-byedited-by1) (我刊青年编委孙中奎来稿) -
-
[1] MARTIN P, CHARBIWALA Z, SRIVASTAVA M. DoubleDip: leveraging thermoelectric harvesting for low power monitoring of sporadic water use[C]//Proceedings of the 10 th ACM Conference on Embedded Network Sensor Systems. Toronto, Ontario, Canada: ACM, 2012: 225-238. [2] PRIYA S, INMAN D J. Energy Harvesting Technologies[M]. Boston, MA: Springer, 2009. [3] ROUNDY S, WRIGHT P K. A piezoelectric vibration based generator for wireless electronics[J]. Smart Materials and Structures, 2004, 13(5): 1131-1142. doi: 10.1088/0964-1726/13/5/018 [4] 杨涛, 周生喜, 曹庆杰, 等. 非线性振动能量俘获技术的若干进展[J]. 力学学报, 2021, 53(11): 2894-2909. doi: 10.6052/0459-1879-21-474YANG Tao, ZHOU Shengxi, CAO Qingjie, et al. Some advances in nonlinear vibration energy harvesting technology[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909. (in Chinese) doi: 10.6052/0459-1879-21-474 [5] MAURYA D, PEDDIGARI M, KANG M G, et al. Lead-free piezoelectric materials and composites for high power density energy harvesting[J]. Journal of Materials Research, 2018, 33(16): 2235-2263. doi: 10.1557/jmr.2018.172 [6] WEI C, JING X. A comprehensive review on vibration energy harvesting: modelling and realization[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 1-18. doi: 10.1016/j.rser.2017.01.073 [7] YILDIRIM T, GHAYESH M H, LI W, et al. A review on performance enhancement techniques for ambient vibration energy harvesters[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 435-449. doi: 10.1016/j.rser.2016.12.073 [8] 刘久周, 张凤玲, 辛健强, 等. 一种非线性宽频压电能量收集系统的动力学特性分析[J]. 振动工程学报, 2021, 34(3): 567-576.LIU Jiuzhou, ZHANG Fengling, XIN Jianqiang, et al. Dynamic characteristics of a nonlinear wideband energy harvester based on piezoelectric material[J]. Journal of Vibration Engineering, 2021, 34(3): 567-576. (in Chinese) [9] ERTURK A, HOFFMANN J, INMAN D J. A piezomagnetoelastic structure for broadband vibration energy harvesting[J]. Applied Physics Letters, 2009, 94(25): 254102. doi: 10.1063/1.3159815 [10] VOCCA H, NERI I, TRAVASSO F, et al. Kinetic energy harvesting with bistable oscillators[J]. Applied Energy, 2012, 97: 771-776. doi: 10.1016/j.apenergy.2011.12.087 [11] STANTON S C, OWENS B A M, MANN B P. Harmonic balance analysis of the bistable piezoelectric inertial generator[J]. Journal of Sound and Vibration, 2012, 331(15): 3617-3627. doi: 10.1016/j.jsv.2012.03.012 [12] ZHOU S, CAO J, INMAN D J, et al. Broadband tristable energy harvester: modeling and experiment verification[J]. Applied Energy, 2014, 133: 33-39. doi: 10.1016/j.apenergy.2014.07.077 [13] TÉKAM G T O, KWUIMY C A K, WOAFO P. Analysis of tristable energy harvesting system having fractional order viscoelastic material[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2015, 25(1): 013112. doi: 10.1063/1.4905276 [14] 郑友成, 朱强国, 刘周龙, 等. 非对称、变势能阱三稳态压电振动能量采集器特性研究[J]. 振动工程学报, 2023, 36(5): 1280-1291.ZHENG Youcheng, ZHU Qiangguo, LIU Zhoulong, et al. Research on tri-stable piezoelectric vibration energy harvester with asymmetric and time-varying potential wells[J]. Journal of Vibration Engineering, 2023, 36(5): 1280-1291. (in Chinese) [15] ZHANG Y, JIN Y, XU P. Stochastic resonance and bifurcations in a harmonically driven tri-stable potential with colored noise[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2019, 29(2): 023127. doi: 10.1063/1.5053479 [16] PANYAM M, DAQAQ M F. Characterizing the effective bandwidth of tri-stable energy harvesters[J]. Journal of Sound and Vibration, 2017, 386: 336-358. doi: 10.1016/j.jsv.2016.09.022 [17] 张舒, 徐鉴. 时滞耦合系统非线性动力学的研究进展[J]. 力学学报, 2017, 49(3): 565-587.ZHANG Shu, XU Jian. Review on nonlinear dynamics in systems with coulpling delays[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587. (in Chinese) [18] XU J, YU P. Delay-induced bifurcations in a nonautonomous system with delayed velocity feedbacks[J]. International Journal of Bifurcation and Chaos, 2004, 14(8): 2777-2798. doi: 10.1142/S0218127404010989 [19] 王道航, 孙博, 刘春霞, 等. 时滞反馈对非线性黏弹性隔振系统的竖向振动控制研究[J]. 应用数学和力学, 2025, 46(2): 199-207. doi: 10.21656/1000-0887.450037WANG Daohang, SUN Bo, LIU Chunxia, et al. Vertical vibration control of nonlinear viscoelastic isolation systems with time delay feedback[J]. Applied Mathematics and Mechanics, 2025, 46(2): 199-207. doi: 10.21656/1000-0887.450037 [20] BELHAQ M, GHOULI Z, HAMDI M. Energy harvesting in a Mathieu-Van der Pol-Duffing MEMS device using time delay[J]. Nonlinear Dynamics, 2018, 94(4): 2537-2546. doi: 10.1007/s11071-018-4508-3 [21] PARK S, LEE C, KIM H, et al. Development of piezoelectric energy harvesting modules for impedance-based wireless structural health monitoring system[J]. KSCE Journal of Civil Engineering, 2013, 17(4): 746-752. doi: 10.1007/s12205-013-0225-0 [22] YANG T, CAO Q. Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities[J]. Mechanical Systems and Signal Processing, 2018, 103: 216-235. doi: 10.1016/j.ymssp.2017.10.002 [23] YANG T, CAO Q. Time delay improves beneficial performance of a novel hybrid energy harvester[J]. Nonlinear Dynamics, 2019, 96(2): 1511-1530. doi: 10.1007/s11071-019-04868-z [24] 聂欣, 张婷婷, 靳艳飞. 窄带随机激励下三稳态压电俘能器的动力学特性与实验研究[J]. 动力学与控制学报, 2023, 21(3): 53-62.NIE Xin, ZHANG Tingting, JIN Yanfei. Dynamical behaviors and experimental analysis of tri-stable piezoelectric energy harvester under narrow-band random excitations[J]. Journal of Dynamics and Control, 2023, 21(3): 53-62. (in Chinese) [25] 黄冬梅, 徐伟, 谢公南. 随机窄带噪声作用下非线性碰撞振动系统的稳态响应研究[J]. 应用数学和力学, 2016, 37(6): 633-643. doi: 10.3879/j.issn.1000-0887.2016.06.009HUANG Dongmei, XU Wei, XIE Gongnan. Dynamic responses of nonlinear vibro-impact systems under narrow-band random parametric excitation[J]. Applied Mathematics and Mechanics, 2016, 37(6): 633-643. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.06.009 [26] JIN Y, ZHANG Y. Dynamics of a delayed Duffing-type energy harvester under narrow-band random excitation[J]. Acta Mechanica, 2021, 232(3): 1045-1060. doi: 10.1007/s00707-020-02877-3 [27] YANG Y G, HE L L, ZENG Y H, S et al. Stochastic analysis of a time-delayed viscoelastic energy harvester subjected to narrow-band noise[J]. International Journal of Non-Linear Mechanics, 2022, 147: 104230. doi: 10.1016/j.ijnonlinmec.2022.104230 [28] ZHANG Y, JIN Y, ZHANG Z. Dynamics of a tri-stable hybrid energy harvester under narrow-band random excitation[J]. International Journal of Non-Linear Mechanics, 2023, 148: 104294. doi: 10.1016/j.ijnonlinmec.2022.104294 [29] HUANG D, ZHOU S, YANG Z. Resonance mechanism of nonlinear vibrational multistable energy harvesters under narrow-band stochastic parametric excitations[J]. Complexity, 2019, 2019(1): 1050143. doi: 10.1155/2019/1050143 [30] DAVIES H G, LIU Q. The response envelope probability density function of a Duffing oscillator with random narrow-band excitation[J]. Journal of Sound and Vibration, 1990, 139(1): 1-8. doi: 10.1016/0022-460X(90)90770-Z -