留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应改进白鲸算法的工程结构可靠性分析

李斯嘉 钟昌廷 辛大波

李斯嘉, 钟昌廷, 辛大波. 基于自适应改进白鲸算法的工程结构可靠性分析[J]. 应用数学和力学, 2025, 46(10): 1295-1306. doi: 10.21656/1000-0887.450233
引用本文: 李斯嘉, 钟昌廷, 辛大波. 基于自适应改进白鲸算法的工程结构可靠性分析[J]. 应用数学和力学, 2025, 46(10): 1295-1306. doi: 10.21656/1000-0887.450233
LI Sijia, ZHONG Changting, XIN Dabo. Adaptive Enhanced Beluga Whale Optimization for Structural Reliability Analysis of Engineering Structures[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1295-1306. doi: 10.21656/1000-0887.450233
Citation: LI Sijia, ZHONG Changting, XIN Dabo. Adaptive Enhanced Beluga Whale Optimization for Structural Reliability Analysis of Engineering Structures[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1295-1306. doi: 10.21656/1000-0887.450233

基于自适应改进白鲸算法的工程结构可靠性分析

doi: 10.21656/1000-0887.450233
基金项目: 

国家自然科学基金 12402139

国家自然科学基金 52368070

海南省自然科学基金 524QN223

详细信息
    作者简介:

    李斯嘉(2000—), 女, 硕士生(E-mail: lisijia@hainanu.edu.cn)

    辛大波(1978—), 男, 教授, 博士, 博士生导师(E-mail: xindabo@hainanu.edu.cn)

    通讯作者:

    钟昌廷(1991—), 男, 副研究员, 博士(通讯作者. E-mail: zhongct@hainanu.edu.cn)

  • 中图分类号: TM752

Adaptive Enhanced Beluga Whale Optimization for Structural Reliability Analysis of Engineering Structures

  • 摘要: 结构可靠性分析是衡量工程结构不确定性的重要手段,其中一阶可靠度方法(FORM)因简单高效而被广泛使用,但依赖于梯度信息,且对高维非线性问题可能陷入不收敛. 该文引入自适应改进白鲸优化算法(hybrid Alibaba-beluga whale optimization, HABWO)进行工程结构可靠性分析,其中白鲸优化算法(beluga whale optimization, BWO)更新策略控制算法开发阶段,结合阿里巴巴与四十大盗优化算法(Alibaba and the forty thieves algorithm, AFT)的智慧等级与更新机制控制算法探索阶段,并发展了自适应策略来平衡算法的探索和开发能力. HABWO结合一阶可靠度方法寻优可靠指标,具有较好的全局寻优和收敛能力. 最后,通过三个工程结构可靠度分析案例进行验证,比较了6种不同的群智能优化算法. 分析结果表明,所提方法比其他智能优化算法具有更高的计算精度和稳定性.
  • 图  1  自适应机制迭代参数

    Figure  1.  Self-adaptive iteration parameters

    图  2  HABWO-FORM流程图

    Figure  2.  The HABWO-FORM flow chart

    图  3  屋架结构

    Figure  3.  A roof structure

    图  4  屋架结构可靠度分析迭代曲线

    Figure  4.  Iterative curves of reliability analysis of a roof structure

    图  5  框架结构

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  5.  The frame structure

    图  6  框架结构可靠度分析迭代曲线

    Figure  6.  Iterative curves of reliability analysis of the frame structure

    图  7  大跨桥梁结构

    Figure  7.  The large span bridge structure

    图  8  布洛溪大桥可靠度分析迭代曲线

    Figure  8.  Iterative curves of reliability analysis of the large span bridge structure

    表  1  智能优化算法参数

    Table  1.   Algorithmic parameters for metaheuristics

    algorithm parameter value
    all algorithms population size, maximum iterations, replication times 100, 600, 20
    PSO cognitive and social constant,inertia weight linearly decreased at interval c1=2, c2=2,[0.9,0.1]
    EO α1, α2, GP 2, 1, 0.5
    GEO Pα: propensity to attack
    Pc: propensity to cruise
    [0.5,-2]
    [1,-0.5]
    SSA leader position update probability 0.5
    HHO probability thresholds of escaping, escaping energy 0.5, 0.5
    BWO probability of whale fall decreased at interval Wf [0.1,0.05]
    HABWO control parameter 0.5, 0.5
    下载: 导出CSV

    表  2  屋架结构随机变量分布

    Table  2.   A roof structure random variable distribution

    variable description distribution pattern mean value μ variable coefficient
    q/(kN/m) mean vertical load normal distribution 20 0.07
    l/m roof truss span normal distribution 12 0.01
    As/m2 cross-sectional area normal distribution 9.82×10-4 0.06
    Ac/m2 cross-sectional area normal distribution 4×10-2 0.12
    Es/(kN/m2) modulus of elasticity normal distribution 1.0×1011 0.06
    Ec/(kN/m2) modulus of elasticity normal distribution 2.0×1010 0.06
    下载: 导出CSV

    表  3  屋架结构可靠指标计算结果

    Table  3.   Calculation results of reliability indexes for a roof structure

    method min mean max std CPU time/s
    PSO-FORM 2.434 1 2.491 0 2.787 0 0.102 0 0.44
    EO-FORM 2.428 7 2.428 7 2.428 7 3.799 3×10-6 1.21
    GEO-FORM 3.441 6 4.932 0 5.125 4 0.523 6 7.39
    SSA-FORM 2.430 8 2.437 3 2.513 6 0.018 6 2.33
    HHO-FORM 2.520 8 2.789 2 4.118 1 0.409 6 2.25
    BWO-FORM 3.065 3 4.360 4 5.585 7 0.658 9 2.13
    HABWO-FORM 2.428 7 2.428 7 2.428 7 2.267 4×10-7 1.06
    下载: 导出CSV

    表  4  框架结构可靠度分析的随机变量

    Table  4.   Frame structure random variable distributions

    variable distribution pattern mean value standard deviation
    P1~P7/kN lognormal distribution 80 8
    E/GPa normal distribution 200 20
    (AB1~AB21)/m2 normal distribution 1.3×10-2 1.3×10-3
    (IB1~IB21)/m4 normal distribution 7.0×10-4 7.0×10-5
    (AC1~AC28)/m2 normal distribution 1.3×10-2 1.3×10-3
    (IC1~IC28)/m4 normal distribution 3.0×10-4 3.0×10-5
    下载: 导出CSV

    表  5  框架结构可靠指标计算结果

    Table  5.   Calculation results of reliability indexes for the frame structure

    method min mean max std CPU time/s
    PSO-FORM 4.828 9 6.823 4 9.807 5 1.237 0 569.38
    EO-FORM 3.993 3 4.028 2 4.058 0 0.019 7 575.99
    GEO-FORM 9.295 1 9.713 7 10.797 0 0.403 9 540.60
    SSA-FORM 4.167 0 4.256 6 4.566 5 0.091 3 524.90
    HHO-FORM 4.030 1 4.038 7 4.067 8 0.008 3 1 324.09
    BWO-FORM 6.535 4 13.120 7 18.394 7 3.263 3 600.21
    HABWO-FORM 3.965 1 3.973 3 4.002 7 0.009 0 538.16
    下载: 导出CSV

    表  6  布洛溪大桥可靠度分析的随机变量

    Table  6.   Large span bridge structure random variable distributions

    variable distribution pattern mean value variable coefficient
    (A1~A34)/m2 normal distribution 0.076 18 0.1
    (A35~A68)/m2 normal distribution 0.037 16 0.1
    (A69-A103)/m2 normal distribution 0.039 02 0.1
    (A104~A137)/m2 normal distribution 0.018 58 0.1
    (E1~E137)/GPa normal distribution 201.097 0.08
    P1/kN extreme typeⅠ distribution 2 035.266 0.18
    P2/kN extreme typeⅠ distribution 1 017.633 0.17
    P3/kN extreme typeⅠ distribution 1 017.633 0.16
    P4/kN extreme typeⅠ distribution 1 017.633 0.15
    P5/kN extreme typeⅠ distribution 1 017.633 0.14
    P6/kN extreme typeⅠ distribution 1 017.633 0.13
    P7/kN extreme typeⅠ distribution 1 017.633 0.12
    P8/kN extreme typeⅠ distribution 1 017.633 0.11
    P9/kN extreme typeⅠ distribution 1 017.633 0.10
    下载: 导出CSV

    表  7  布洛溪大桥可靠指标计算结果

    Table  7.   Calculation results of reliability indexes for the large span bridge structure

    method min mean max std CPU time/s
    PSO-FORM 22.782 9 27.427 7 28.746 6 1.307 6 556.75
    EO-FORM 4.929 7 6.278 9 8.429 4 0.830 6 547.15
    GEO-FORM 3.826 2 4.130 5 4.879 7 0.246 2 551.98
    SSA-FORM 4.058 6 4.376 3 4.732 8 0.186 3 533.18
    HHO-FORM 3.241 3 4.438 3 5.496 2 0.719 0 1 346.84
    BWO-FORM 21.430 7 23.567 8 26.948 2 1.656 7 595.23
    HABWO-FORM 2.873 8 2.962 7 3.102 6 0.062 1 550.28
    下载: 导出CSV
  • [1] ZHOU T, PENG Y, LI J. An efficient reliability method combining adaptive global metamodel and probability density evolution method[J]. Mechanical Systems and Signal Processing, 2019, 131: 592-616. doi: 10.1016/j.ymssp.2019.06.009
    [2] 李彬, 郝鹏, 孟增, 等. 基于改进自适应混沌控制的逆可靠度分析方法[J]. 应用数学和力学, 2017, 38(9): 979-987. doi: 10.21656/1000-0887.380001

    LI Bin, HAO Peng, MENG Zeng, et al. An improved adaptive chaos control method for inverse reliability analysis[J]. Applied Mathematics and Mechanics, 2017, 38(9): 979-987. (in Chinese) doi: 10.21656/1000-0887.380001
    [3] ZHANG R, DAI H. Stochastic analysis of structures under limited observations using kernel density estimation and arbitrary polynomial chaos expansion[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 403: 115689. doi: 10.1016/j.cma.2022.115689
    [4] OU Y, CAI Y, ZENG L, et al. A teaching-learning-based optimization algorithm for reliability analysis with an adaptive penalty coefficient[J]. Structures, 2024, 65: 106695. doi: 10.1016/j.istruc.2024.106695
    [5] GONG J X, YI P. A robust iterative algorithm for structural reliability analysis[J]. Structural and Multidisciplinary Optimization, 2011, 43(4): 519-527. doi: 10.1007/s00158-010-0582-y
    [6] HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris Hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. doi: 10.1016/j.future.2019.02.028
    [7] RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems[J]. Computer-Aided Design, 2011, 43(3): 303-315. doi: 10.1016/j.cad.2010.12.015
    [8] 钟昌廷. 基于智能优化算法的工程结构可靠度研究[D]. 长沙: 湖南大学, 2020.

    ZHONG Changting. Study on reliability analysis of engineering structure based on intelligent optimization algorithms[D]. Changsha: Hunan University, 2020. (in Chinese)
    [9] 钟昌廷, 李刚. 基于生物地理-海鸥群优化的高维结构可靠性分析[J]. 计算力学学报, 2022, 39(1): 1-6.

    ZHONG Changting, LI Gang. Biogeography-based seagull optimization for high-dimensional structural reliability analysis[J]. Chinese Journal of Computational Mechanics, 2022, 39(1): 1-6. (in Chinese)
    [10] 杨小猛, 李亮, 胡雄飞, 等. 基于改进正余弦算法的抱杆结构优化[J]. 应用数学和力学, 2024, 45(5): 529-538. doi: 10.21656/1000-0887.440354

    YANG Xiaomeng, LI Liang, HU Xiongfei, et al. Structure optimization of holding poles based on the improved sine cosine algorithm[J]. Applied Mathematics and Mechanics, 2024, 45(5): 529-538. (in Chinese) doi: 10.21656/1000-0887.440354
    [11] CHEN H, CHEN G, YANG D, et al. Neural network-based DPIM for uncertainty quantification of imperfect cylindrical stiffened shells with multiple random parameters[J]. Engineering Analysis With Boundary Elements, 2024, 166: 105795. doi: 10.1016/j.enganabound.2024.105795
    [12] ZHONG C, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215. doi: 10.1016/j.knosys.2022.109215
    [13] JIA H, WEN Q, WU D, et al. Modified beluga whale optimization with multi-strategies for solving engineering problems[J]. Journal of Computational Design and Engineering, 2023, 10(6): 2065-2093. doi: 10.1093/jcde/qwad089
    [14] LIU Y, WU G, GUO Y, et al. A new noncontact detection method for assessing the aging state of composite insulators[J]. IEEE Transactions on Industrial Informatics, 2024, 20(4): 6802-6813. doi: 10.1109/TII.2024.3352089
    [15] WANG X, MEI X, WANG X, et al. Motion position prediction and machining accuracy compensation of galvanometer scanner based on BWO-GRU model[J]. Mechanical Systems and Signal Processing, 2024, 210: 111081. doi: 10.1016/j.ymssp.2023.111081
    [16] BRAIK M, RYALAT M H, AL-ZOUBI H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves[J]. Neural Computing and Applications, 2022, 34(1): 409-455. doi: 10.1007/s00521-021-06392-x
    [17] HASOFER A M, LIND N C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics Division, 1974, 100(1): 111-121. doi: 10.1061/JMCEA3.0001848
    [18] RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 1978, 9(5): 489-494.
    [19] MEZURA-MONTES E, COELLO C A. Constraint-handling in nature-inspired numerical optimization: past, present and future[J]. Swarm and Evolutionary Computation, 2011, 1(4): 173-194. doi: 10.1016/j.swevo.2011.10.001
    [20] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//MHS' 95 Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan. IEEE, 1995: 39-43.
    [21] FARAMARZI A, HEIDARINEJAD M, STEPHENS B, et al. Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191: 105190. doi: 10.1016/j.knosys.2019.105190
    [22] MOHAMMADI-BALANI A, DEHGHAN NAYERI M, AZAR A, et al. Golden eagle optimizer: a nature-inspired metaheuristic algorithm[J]. Computers & Industrial Engineering, 2021, 152: 107050.
    [23] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. doi: 10.1016/j.advengsoft.2017.07.002
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  26
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-15
  • 修回日期:  2024-09-22
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回