Numerical Simulation of Single Hole Blasting of Rock Based on the Material Point Method
-
摘要: 钻爆法是矿产资源开采中主要的破岩手段,其爆破破岩理论分析对适用条件进行了极大约束,且其爆破试验存在着费用昂贵和爆后裂纹难以观察等局限性,因此数值方法已成为探索岩石爆破破碎机理的重要补充手段. 该文构建了耦合广义插值物质点(GIMP)和对流粒子域插值物质点(CPDI)的二维物质点模型,分析了背景网格和物质点离散尺寸效应影响. 研究表明:背景网格和物质点离散尺寸会显著地影响爆炸能量传递,岩石的损伤程度与炸药向岩石传递的总能量呈正相关;GIMP类型物质点适宜爆炸核心区用于模拟极大压缩变形,CPDI类型物质点更适合模拟岩石爆破破坏情况;沿径向传播的环状应力波会在环向产生较大的拉应力,从而导致径向裂纹的产生.Abstract: The drilling and blasting method is the main rock-breaking means in mineral resource mining, and its theoretical analysis imposes great limits on the applicable conditions. Moreover, the blasting experiments have limitations such as high costs, and difficulty in observing the cracks formed after blasting. Numerical methods have become an important supplementary means to explore the comprehensive fracture mechanism of rock explosion. A 2D material point model coupled with the generalized interpolation material point (GIMP) and the conjugate particle domain interpolation material point (CPDI), was proposed to analyze effects of the background mesh and material point discretization sizes. The results show that, the discretization sizes of the background grid and material points significantly influence the transfer of explosion energy, and the degree of damage to the rock is positively correlated with the total energy transferred from the explosive to the rock. In the simulation of the fracture failure under rock blasting load, the GIMP-type material points are suitable for simulating extreme compression deformation in explosive core areas. In contrast, the CPDI-type material points are more appropriate for simulating rock blasting damage situations. Under the action of detonation waves, the compressive stress on the borehole wall exceeds the rock compressive strength, leading to the rock crushing destruction, and a severely damaged area appearing around the borehole. The detonation wave continues to propagate and attenuate into a stress wave, and the hoop stress wave propagating along the radial direction will generate a larger tensile stress in the circumferential direction, leading to the formation of radial cracks.
-
Key words:
- blasting /
- material point method /
- rock
edited-byedited-by1) (我刊青年编委刘永杰推荐) -
表 1 PETN炸药的JWL状态方程参数
Table 1. JWL state equation parameters for PETN explosives
material A/GPa B/GPa R1 R2 ω E0/(kJ/m3) PETN 586.0 21.6 5.81 1.77 0.282 7 380 000 表 2 铜和聚乙烯的Mie-Gruneisen状态方程参数
Table 2. Mie-Gruneisen state equation parameters for copper and polyethylene
material c0/(m/s) s1 density/(kg/m3) Gruneisen constant copper 3 940 1.489 8.93 1.99 polyethylene 2 901 1.481 0.915 1.64 表 3 铜的Johnson-Cook强度模型参数
Table 3. Johnson-Cook strength model parameters for copper
material A/MPa B/MPa C n copper 90.0 292.0 0.025 0.31 表 4 花岗岩的JH-2模型参数
Table 4. JH-2 model parameters of granite
parameter value parameter value density/(g/cm3) 2.66 remaining strength factor 0.25 elastic modulus/MPa 51 188.28 σHEL/MPa 4 500 Poisson’s ratio 0.168 18 pHEL/MPa 3 700 A 0.76 beta 0.5 B 0.25 D1 0.005 C 0.005 D2 0.7 M 0.62 K1/GPa 25.7 reference strain rate/s-1 1 K2/GPa -4 500 hydrostatic strength/MPa 54 K3/GPa 300 000 -
[1] FENG X T, YAO Z B, LI S J, et al. In situ observation of hard surrounding rock displacement at 2400-m-deep tunnels[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 873-892. doi: 10.1007/s00603-017-1371-3 [2] WAGNER H. Deep mining: a rock engineering challenge[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1417-1446. doi: 10.1007/s00603-019-01799-4 [3] RANJITH P G, ZHAO J, JU M, et al. Opportunities and challenges in deep mining: a brief review[J]. Engineering, 2017, 3(4): 546-551. doi: 10.1016/J.ENG.2017.04.024 [4] CASTRO L, BEWICK R, CARTER T. An overview of numerical modelling applied to deep mining[M]//Innovative Numerical Modelling in Geomechanics. Boca Raton: CRC Press, 2012: 405-426. [5] LI X, ZHU Z, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses[J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. doi: 10.1016/j.tust.2021.103968 [6] NEINGO P N, THOLANA T. Trends in productivity in the South African gold mining industry[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2016, 116(3): 283-290. [7] CHEN Q K, ZHU W C. Mechanism of the crack formation induced by pre-split blasting and design method for the pre-split blasting hole space[J]. Journal of Northeastern University (Natural Science), 2011, 32(7): 1024. [8] 柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42(1): 1-14. doi: 10.21656/1000-0887.410262LIU Zhanli, CHU Dongyang, WANG Tao, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading[J]. Applied Mathematics and Mechanics, 2021, 42(1): 1-14. (in Chinese) doi: 10.21656/1000-0887.410262 [9] BENDEZU M, ROMANEL C, ROEHL D. Finite element analysis of blast-induced fracture propagation in hard rocks[J]. Computers & Structures, 2017, 182: 1-13. [10] ZHU W C, BAI Y, LI X B, et al. Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests[J]. International Journal of Impact Engineering, 2012, 49: 142-157. doi: 10.1016/j.ijimpeng.2012.04.002 [11] XIE L X, LU W B, ZHANG Q B, et al. Damage evolution mechanisms of rock in deep tunnels induced by cut blasting[J]. Tunnelling and Underground Space Technology, 2016, 58: 257-270. doi: 10.1016/j.tust.2016.06.004 [12] XIE L X, LU W B, ZHANG Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in situ stresses[J]. Tunnelling and Underground Space Technology, 2017, 66: 19-33. doi: 10.1016/j.tust.2017.03.009 [13] BOBET A, FAKHIMI A, JOHNSON S, et al. Numerical models in discontinuous media: review of advances for rock mechanics applications[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1547-1561. doi: 10.1061/(ASCE)GT.1943-5606.0000133 [14] DONZÉ F V, BOUCHEZ J, MAGNIER S A. Modeling fractures in rock blasting[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1153-1163. doi: 10.1016/S1365-1609(97)80068-8 [15] DE VAUCORBEIL A, NGUYEN V P, SINAIE S, et al. Material point method after 25 years: theory, implementation, and applications[J]. Advances in Applied Mechanics, 2020, 53: 185-398. [16] BANADAKI M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock[J]. International Journal of Impact Engineering, 2012, 40: 16-25. [17] LEE J S, HSU C K, CHANG C L. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX[J]. Thermochimica Acta, 2002, 392: 173-176. [18] HEUZÉ O. General form of the Mie-Grüneisen equation of state[J]. Comptes Rendus Mécanique, 2012, 340(10): 679-687. [19] LEMONS D S, LUND C M. Thermodynamics of high temperature, Mie-Gruneisen solids[J]. American Journal of Physics, 1999, 67(12): 1105-1108. doi: 10.1119/1.19091 [20] WANG Y, ZENG X, CHEN H, et al. Modified Johnson-Cook constitutive model of metallic materials under a wide range of temperatures and strain rates[J]. Results in Physics, 2021, 27: 104498. doi: 10.1016/j.rinp.2021.104498 -
下载:
渝公网安备50010802005915号