留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物质点法的岩石单孔爆破数值模拟研究

韩方建 库启贤 于海军 邱乙 邹明 王蒙

韩方建, 库启贤, 于海军, 邱乙, 邹明, 王蒙. 基于物质点法的岩石单孔爆破数值模拟研究[J]. 应用数学和力学, 2025, 46(10): 1320-1328. doi: 10.21656/1000-0887.450229
引用本文: 韩方建, 库启贤, 于海军, 邱乙, 邹明, 王蒙. 基于物质点法的岩石单孔爆破数值模拟研究[J]. 应用数学和力学, 2025, 46(10): 1320-1328. doi: 10.21656/1000-0887.450229
HAN Fangjian, KU Qixian, YU Haijun, QIU Yi, ZOU Ming, WANG Meng. Numerical Simulation of Single Hole Blasting of Rock Based on the Material Point Method[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1320-1328. doi: 10.21656/1000-0887.450229
Citation: HAN Fangjian, KU Qixian, YU Haijun, QIU Yi, ZOU Ming, WANG Meng. Numerical Simulation of Single Hole Blasting of Rock Based on the Material Point Method[J]. Applied Mathematics and Mechanics, 2025, 46(10): 1320-1328. doi: 10.21656/1000-0887.450229

基于物质点法的岩石单孔爆破数值模拟研究

doi: 10.21656/1000-0887.450229
(我刊青年编委刘永杰推荐)
基金项目: 

四川省自然科学基金 2022NSFSC1915

详细信息
    作者简介:

    韩方建(1969—),男,高级工程师

    通讯作者:

    库启贤(1979—),男,高级工程师(通讯作者. E-mail: 695449588@qq.com)

  • 中图分类号: O39

Numerical Simulation of Single Hole Blasting of Rock Based on the Material Point Method

(Recommended by LIU Yongjie, M.AMM Youth Editorial Board)
  • 摘要: 钻爆法是矿产资源开采中主要的破岩手段,其爆破破岩理论分析对适用条件进行了极大约束,且其爆破试验存在着费用昂贵和爆后裂纹难以观察等局限性,因此数值方法已成为探索岩石爆破破碎机理的重要补充手段. 该文构建了耦合广义插值物质点(GIMP)和对流粒子域插值物质点(CPDI)的二维物质点模型,分析了背景网格和物质点离散尺寸效应影响. 研究表明:背景网格和物质点离散尺寸会显著地影响爆炸能量传递,岩石的损伤程度与炸药向岩石传递的总能量呈正相关;GIMP类型物质点适宜爆炸核心区用于模拟极大压缩变形,CPDI类型物质点更适合模拟岩石爆破破坏情况;沿径向传播的环状应力波会在环向产生较大的拉应力,从而导致径向裂纹的产生.
    1)  (我刊青年编委刘永杰推荐)
  • 图  1  数值模型

    Figure  1.  The numerical model

    图  2  炮孔附近最终的损伤云图

    Figure  2.  The final damage contour near the borehole

    图  3  不同物质点尺寸的数值模拟结果

    Figure  3.  Numerical simulation results of different rock particle sizes

    图  4  不同时刻压力云图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  The pressure contour at different time points

    图  5  不同时刻损伤云图

    Figure  5.  The damage contour at different moments

    图  6  监测点G3的压力时程曲线

    Figure  6.  The pressure time history curve of monitoring point G3

    图  7  圆柱体爆破模型和裂纹分布

    Figure  7.  The cylinder blasting model and crack distribution

    表  1  PETN炸药的JWL状态方程参数

    Table  1.   JWL state equation parameters for PETN explosives

    material A/GPa B/GPa R1 R2 ω E0/(kJ/m3)
    PETN 586.0 21.6 5.81 1.77 0.282 7 380 000
    下载: 导出CSV

    表  2  铜和聚乙烯的Mie-Gruneisen状态方程参数

    Table  2.   Mie-Gruneisen state equation parameters for copper and polyethylene

    material c0/(m/s) s1 density/(kg/m3) Gruneisen constant
    copper 3 940 1.489 8.93 1.99
    polyethylene 2 901 1.481 0.915 1.64
    下载: 导出CSV

    表  3  铜的Johnson-Cook强度模型参数

    Table  3.   Johnson-Cook strength model parameters for copper

    material A/MPa B/MPa C n
    copper 90.0 292.0 0.025 0.31
    下载: 导出CSV

    表  4  花岗岩的JH-2模型参数

    Table  4.   JH-2 model parameters of granite

    parameter value parameter value
    density/(g/cm3) 2.66 remaining strength factor 0.25
    elastic modulus/MPa 51 188.28 σHEL/MPa 4 500
    Poisson’s ratio 0.168 18 pHEL/MPa 3 700
    A 0.76 beta 0.5
    B 0.25 D1 0.005
    C 0.005 D2 0.7
    M 0.62 K1/GPa 25.7
    reference strain rate/s-1 1 K2/GPa -4 500
    hydrostatic strength/MPa 54 K3/GPa 300 000
    下载: 导出CSV
  • [1] FENG X T, YAO Z B, LI S J, et al. In situ observation of hard surrounding rock displacement at 2400-m-deep tunnels[J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 873-892. doi: 10.1007/s00603-017-1371-3
    [2] WAGNER H. Deep mining: a rock engineering challenge[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1417-1446. doi: 10.1007/s00603-019-01799-4
    [3] RANJITH P G, ZHAO J, JU M, et al. Opportunities and challenges in deep mining: a brief review[J]. Engineering, 2017, 3(4): 546-551. doi: 10.1016/J.ENG.2017.04.024
    [4] CASTRO L, BEWICK R, CARTER T. An overview of numerical modelling applied to deep mining[M]//Innovative Numerical Modelling in Geomechanics. Boca Raton: CRC Press, 2012: 405-426.
    [5] LI X, ZHU Z, WANG M, et al. Numerical study on the behavior of blasting in deep rock masses[J]. Tunnelling and Underground Space Technology, 2021, 113: 103968. doi: 10.1016/j.tust.2021.103968
    [6] NEINGO P N, THOLANA T. Trends in productivity in the South African gold mining industry[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2016, 116(3): 283-290.
    [7] CHEN Q K, ZHU W C. Mechanism of the crack formation induced by pre-split blasting and design method for the pre-split blasting hole space[J]. Journal of Northeastern University (Natural Science), 2011, 32(7): 1024.
    [8] 柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42(1): 1-14. doi: 10.21656/1000-0887.410262

    LIU Zhanli, CHU Dongyang, WANG Tao, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading[J]. Applied Mathematics and Mechanics, 2021, 42(1): 1-14. (in Chinese) doi: 10.21656/1000-0887.410262
    [9] BENDEZU M, ROMANEL C, ROEHL D. Finite element analysis of blast-induced fracture propagation in hard rocks[J]. Computers & Structures, 2017, 182: 1-13.
    [10] ZHU W C, BAI Y, LI X B, et al. Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests[J]. International Journal of Impact Engineering, 2012, 49: 142-157. doi: 10.1016/j.ijimpeng.2012.04.002
    [11] XIE L X, LU W B, ZHANG Q B, et al. Damage evolution mechanisms of rock in deep tunnels induced by cut blasting[J]. Tunnelling and Underground Space Technology, 2016, 58: 257-270. doi: 10.1016/j.tust.2016.06.004
    [12] XIE L X, LU W B, ZHANG Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in situ stresses[J]. Tunnelling and Underground Space Technology, 2017, 66: 19-33. doi: 10.1016/j.tust.2017.03.009
    [13] BOBET A, FAKHIMI A, JOHNSON S, et al. Numerical models in discontinuous media: review of advances for rock mechanics applications[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11): 1547-1561. doi: 10.1061/(ASCE)GT.1943-5606.0000133
    [14] DONZÉ F V, BOUCHEZ J, MAGNIER S A. Modeling fractures in rock blasting[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1153-1163. doi: 10.1016/S1365-1609(97)80068-8
    [15] DE VAUCORBEIL A, NGUYEN V P, SINAIE S, et al. Material point method after 25 years: theory, implementation, and applications[J]. Advances in Applied Mechanics, 2020, 53: 185-398.
    [16] BANADAKI M D, MOHANTY B. Numerical simulation of stress wave induced fractures in rock[J]. International Journal of Impact Engineering, 2012, 40: 16-25.
    [17] LEE J S, HSU C K, CHANG C L. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX[J]. Thermochimica Acta, 2002, 392: 173-176.
    [18] HEUZÉ O. General form of the Mie-Grüneisen equation of state[J]. Comptes Rendus Mécanique, 2012, 340(10): 679-687.
    [19] LEMONS D S, LUND C M. Thermodynamics of high temperature, Mie-Gruneisen solids[J]. American Journal of Physics, 1999, 67(12): 1105-1108. doi: 10.1119/1.19091
    [20] WANG Y, ZENG X, CHEN H, et al. Modified Johnson-Cook constitutive model of metallic materials under a wide range of temperatures and strain rates[J]. Results in Physics, 2021, 27: 104498. doi: 10.1016/j.rinp.2021.104498
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  26
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-14
  • 修回日期:  2024-09-17
  • 刊出日期:  2025-10-01

目录

    /

    返回文章
    返回