留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低驱动场钙钛矿铁电超薄薄膜设计及其多态隧穿特性

董言哲 路晓艳

董言哲, 路晓艳. 低驱动场钙钛矿铁电超薄薄膜设计及其多态隧穿特性[J]. 应用数学和力学, 2024, 45(10): 1320-1331. doi: 10.21656/1000-0887.450224
引用本文: 董言哲, 路晓艳. 低驱动场钙钛矿铁电超薄薄膜设计及其多态隧穿特性[J]. 应用数学和力学, 2024, 45(10): 1320-1331. doi: 10.21656/1000-0887.450224
DONG Yanzhe, LU Xiaoyan. Design and Multi-State Tunneling Characteristics of Perovskite Ferroelectric Ultrathin Films With Low-Driving Fields[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1320-1331. doi: 10.21656/1000-0887.450224
Citation: DONG Yanzhe, LU Xiaoyan. Design and Multi-State Tunneling Characteristics of Perovskite Ferroelectric Ultrathin Films With Low-Driving Fields[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1320-1331. doi: 10.21656/1000-0887.450224

低驱动场钙钛矿铁电超薄薄膜设计及其多态隧穿特性

doi: 10.21656/1000-0887.450224
基金项目: 

国家自然科学基金(面上项目) 12372148

国家重点研发计划 2021YFF0501001

详细信息
    作者简介:

    路晓艳(1981—),女,教授,博士,博士生导师(E-mail: Luxy@hit.edu.cn)

    通讯作者:

    董言哲(1997—),男,硕士(通讯作者. E-mail: dyz121025@163.com)

  • 中图分类号: O369

Design and Multi-State Tunneling Characteristics of Perovskite Ferroelectric Ultrathin Films With Low-Driving Fields

  • 摘要: 铁电隧穿结通常为金属-超薄铁电薄膜-金属三明治结构,利用铁电极化状态调控量子隧穿效应获得不同电阻态,实现数据存储功能. 其因读写速度快、功耗低、存储密度高及非易失性存储等特点,成为了新一代信息存储技术重要发展方向. 然而,这种超薄铁电薄膜因极化翻转电场大、速度高,往往存在局部温度升高、稳定性降低等问题,因此,进一步降低铁电薄膜驱动电场对铁电隧穿器件设计至关重要. 研究表明,铁电薄膜可通过调控衬底应变使其处于多畴共存状态,各畴之间翻转驱动电场随着能量势垒的降低而大幅降低. 该文基于WKB近似的电子隧穿理论并结合Landau唯象理论,研究了衬底应变对铁电驱动电场、量子隧穿特性及隧穿电阻开关比的影响. 计算结果表明:通过衬底应变调控,经典钙钛矿铁电薄膜PbTiO3和BaTiO3同时存在面外向上、向下极化以及面内极化3种电阻状态,有效驱动电场可降低至25 MV/m,比单畴铁电隧穿结驱动电场减少了76%. 研究结果为低能耗、多阻态铁电存储器件设计提供了理论基础.
  • 图  1  多畴共存的铁电隧穿模型示意图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Schematic diagram of the ferroelectric tunneling junction with coexisting domains

    图  2  3种畴结构示意图

    Figure  2.  Schematic diagram of 3 kinds of domains

    图  3  衬底对畴结构和自发极化的影响(PbTiO3)

    Figure  3.  Substrate strain-dependent spontaneous polarization of different domains in the PbTiO3 thin film

    图  4  衬底对多畴自由能、体积分数的影响(PbTiO3)

    Figure  4.  Substrate strain-dependent total free energy and the fractions of different domains in the PbTiO3 thin film

    图  5  衬底对不同畴结构自发极化的影响(BaTiO3)

    Figure  5.  Substrate strain-dependent spontaneous polarization of different domains in the BaTiO3 thin film

    图  6  衬底对多畴自由能、体积分数的影响(BaTiO3)

    Figure  6.  Substrate strain-dependent total free energy and the fraction of different domains in the BaTiO3 thin film

    图  7  面外压电系数随衬底的变化(PbTiO3)

    Figure  7.  Substrate strain-dependent out-of-plane piezoelectric coefficient in the PbTiO3 thin film

    图  8  面外压电系数随衬底的变化(BaTiO3)

    Figure  8.  Substrate strain-dependent out-of-plane piezoelectric coefficient in the BaTiO3 thin film

    图  9  多畴铁电隧穿结的3种电阻状态示意图

    Figure  9.  The schematic of 3 resistance states of the ferroelectric tunnel junction with coexisting domains

    图  10  应变为-1.5%时PbTiO3薄膜的I-V曲线

    Figure  10.  Current-voltage curves of the PbTiO3 thin film under a substrate strain of -1.5%

    图  11  应变为+0.5%时PbTiO3薄膜的I-V曲线

    Figure  11.  Current-voltage curves of the PbTiO3 thin film under a substrate strain of +0.5%

    图  12  应变为+1.8%时PbTiO3薄膜的I-V曲线

    Figure  12.  Current-voltage curves of the PbTiO3 thin film under a substrate strain of +1.8%

    图  13  应变为-0.3%时BaTiO3薄膜的I-V曲线

    Figure  13.  Current-voltage curves of the BaTiO3 thin film under a substrate strain of -0.3%

    图  14  应变为+0.3%时BaTiO3薄膜的I-V曲线

    Figure  14.  Current-voltage curves of the BaTiO3 thin film under a substrate strain of +0.3%

    图  15  衬底应变对最大电阻开关比的影响(PbTiO3)

    Figure  15.  Substrate strain-dependent RTER in the PbTiO3 thin films

    图  16  衬底应变对最大电阻开关比的影响(BaTiO3)

    Figure  16.  Substrate strain-dependent RTER in the BaTiO3 thin films

    表  1  铁电薄膜的Landau系数、电致伸缩系数和刚度系数

    Table  1.   The Landau coefficient, the stiffness coefficient, and the electromechanical coefficient of ferroelectric thin films

    PbTiO3 BaTiO3
    a1/(C-2·m2·N) 3.8×(T-752)×105 3.8×(T-383)×105
    a11/(C-4·m6·N) -7.3×107 3.6×(T-448)×106
    a12/(C-4·m6·N) 7.5×108 4.9×108
    a111/(C-6·m10·N) 2.6×108 6.6×109
    a112/(C-6·m10·N) 6.1×109 2.9×109
    Q11/(C-2·m4) 0.089 0.11
    Q12/(C-2·m4) -0.026 -0.043
    s11/(m2·N-1) 8.0×10-12 8.3×10-12
    s12/(m2·N-1) -2.5×10-12 -2.7×10-12
    下载: 导出CSV

    表  2  铁电隧穿结的读写电压设计(PbTiO3薄膜)

    Table  2.   The design of reading and writing voltages of the ferroelectric tunnel junction (PbTiO3)

    misfit strain um/% coercive field Ec/(MV/m) writing voltage Vw/V reading voltage Vr/V
    -1.5 120 0.25 -0.05~0.05
    +0.5 28.5 0.06 -0.05~0.05
    +1.8 200 0.4 -0.05~0.05
    下载: 导出CSV

    表  3  铁电隧穿结的计算参数

    Table  3.   Coefficients of the ferroelectric tunnel junction

    component of FTJ relative coefficient
    ferroelectric layer εb/(8.854×10-12) 90
    φ1/eV 0.5
    κ3/eV -4.5
    μ33 10
    ν 0.3
    electrode (SrRuO3) ls1/m 6×10-11
    εe1/(8.854×10-12) 8.45
    m0/kg 9.109 4×10-31
    下载: 导出CSV
  • [1] ATHLE R, BORG M. Ferroelectric tunnel junction memristors for in-memory computing accelerators[J]. Advanced Intelligent Systems, 2024, 6(3): 2300554. doi: 10.1002/aisy.202300554
    [2] GARCIA V, BIBES M. Ferroelectric tunnel junctions for information storage and processing[J]. Nature Communications, 2014, 5(1): 4289. doi: 10.1038/ncomms5289
    [3] DU X Z, SUN H Y, WANG H, et al. High-speed switching and giant electroresistance in an epitaxial Hf0.5Zr0.5O2-based ferroelectric tunnel junction memristor[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1355-1361.
    [4] ESAKI A L, LAIBOWITZ R B, STILES P J. Polar switch[J]. IBM Technical Disclosure Bulletin, 1971, 13(8): 2161-2164.
    [5] YANO Y, LIJIMA K, DAITOH Y, et al. Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation[J]. Journal of Applied Physics, 1994, 76(12): 7833-7838. doi: 10.1063/1.357891
    [6] MARUYAMA T, SAITOH M, SAKAI I, et al. Growth and characterization of 10-nm-thick c-axis oriented epitaxial PbZr0.25Ti0.75O3 thin films on (100)Si substrate[J]. Applied Physics Letters, 1998, 73(24): 3524-3526. doi: 10.1063/1.122824
    [7] COHEN R E. Origin of ferroelectricity in perovskite oxides[J]. Nature, 1992, 358: 136-138. doi: 10.1038/358136a0
    [8] JUNQUERA J, GHOSEZ P. Critical thickness for ferroelectricity in perovskite ultrathin films[J]. Nature, 2003, 422(6931): 506-509. doi: 10.1038/nature01501
    [9] FONG D D, STEPHENSON G B, STREIFFER S K, et al. Ferroelectricity in ultrathin perovskite films[J]. Science, 2004, 304(5677): 1650-1653. doi: 10.1126/science.1098252
    [10] CONTRERAS J R, KOHLSTEDT H, POPPE U, et al. Resistive switching in metal-ferroelectric-metal junctions[J]. Applied Physics Letters, 2003, 83(22): 4595-4597. doi: 10.1063/1.1627944
    [11] KOHLSTEDT H, PERTSEV N A, CONTRERASJ R, et al. Theoretical current-voltage characteristics of ferroelectric tunnel junctions[J]. Physical Review B, 2005, 72(12): 125341. doi: 10.1103/PhysRevB.72.125341
    [12] WEN Z, WU D. Ferroelectric tunnel junctions: modulations on the potential barrier[J]. Advanced Materials, 2020, 32(27): 1904123. doi: 10.1002/adma.201904123
    [13] JIA Y Y, YANG Q Q, FANG Y W, et al. Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions[J]. Nature Communications, 2024, 15(1): 693. doi: 10.1038/s41467-024-44927-7
    [14] MAX B, HOFFMANN M, MULAOSMANOVIC H, et al. Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing[J]. ACS Applied Electronic Materials, 2020, 2(12): 4023-4033. doi: 10.1021/acsaelm.0c00832
    [15] WANG X, WU M, WEI F S, et al. Electroresistance of Pt/BaTiO3/LaNiO3 ferroelectric tunnel junctions and its dependence on BaTiO3 thickness[J]. Materials Research Express, 2019, 6(4): 046307. doi: 10.1088/2053-1591/aafae0
    [16] WANG H, GUAN Z, LI J, et al. Silicon-compatible ferroelectric tunnel junctions with a SiO2/Hf0.5Zr0.5O2 composite barrier as low-voltage and ultra-high-speed memristors[J]. Advanced Materials, 2024, 36(15): 2211305. doi: 10.1002/adma.202211305
    [17] BOYN S, GARCIA V, FUSIL S, et al. Engineering ferroelectric tunnel junctions through potential profile shaping[J]. APL Materials, 2015, 3(6): 061101. doi: 10.1063/1.4922769
    [18] WEN Z, LI C, WU D, et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semi-conductor tunnel junctions[J]. Nature Materials, 2013, 12(7): 617-621. doi: 10.1038/nmat3649
    [19] LI X Q, LIU J Q, HUANG J Q, et al. Epitaxial strain enhanced ferroelectric polarization toward a giant tunneling electroresistance[J]. ACS Nano, 2024, 18(11): 7989-8001. doi: 10.1021/acsnano.3c10933
    [20] WANG J, JU S, LI Z Y. The converse piezoelectric effect on electrontunnelling across a junction with a ferroelectric-ferromagnetic composite barrier[J]. Journal of Physics D: Applied Physics, 2010, 43(13): 135003. doi: 10.1088/0022-3727/43/13/135003
    [21] LU X Y, CAO W W, JIANG W H, et al. Converse-piezoelectric effect on current-voltage characteristics of symmetric ferroelectric tunnel junctions[J]. Journal of Applied Physics, 2012, 111: 014103. doi: 10.1063/1.3673600
    [22] SOKOLOV A, BAK O, LU H, et al. Effect of epitaxial strain on tunneling electroresistance in ferroelectric tunnel junctions[J]. Nanotechnology, 2015, 26(30): 305202. doi: 10.1088/0957-4484/26/30/305202
    [23] WANG Z J, GUAN Z Y, SUN H Y, et al. High-speed nanoscale ferroelectric tunnel junction for multilevel memory and neural network computing[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24602-24609.
    [24] RUAN J J, QIU X B, YUAN Z S, et al. Improved memory functions in multiferroic tunnel junctions with a dielectric/ferroelectric composite barrier[J]. Applied Physics Letters, 2015, 107(23): 232902. doi: 10.1063/1.4937390
    [25] LV W M, LI C J, ZHENG L M, et al. Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration[J]. Advanced Materials, 2017, 29(24): 1606165. doi: 10.1002/adma.201606165
    [26] DAMODARAN A R, PANDYA S, AGAR J C, et al. Three-state ferroelastic switching and large electromechanical responses in PbTiO3 thin films[J]. Advanced Materials, 2017, 29(37): 1702069. doi: 10.1002/adma.201702069
    [27] LANGENBERG E, PAIK H, SMITH E H, et al. Strain-engineered ferroelastic structures in PbTiO3 films and their control by electric fields[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20691-20703.
    [28] LU X Y, CHEN Z H, CAO Y, et al. Mechanical-force-induced non-local collective ferroelastic switching in epitaxial lead-titanate thin films[J]. Nature Communications, 2019, 10(1): 3951. doi: 10.1038/s41467-019-11825-2
    [29] DONG Y Z, LU X Y, FAN J H, et al. Strain engineering of domain coexistence in epitaxial lead-titanite thin films[J]. Coatings, 2022, 12(4): 542. doi: 10.3390/coatings12040542
    [30] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268. doi: 10.1126/science.aaw2781
    [31] WANG B, LI F, CHEN L Q. Inverse domain-size dependence of piezoelectricity in ferroelectric crystals[J]. Advanced Materials, 2021, 33(51): 2105071. doi: 10.1002/adma.202105071
    [32] KOUKHAR V G, PERTSEV N A, WASER R. Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures[J]. Physical Review B, 2001, 64(21): 214103. doi: 10.1103/PhysRevB.64.214103
    [33] SIMMONS J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J]. Journal of Applied Physics, 1963, 34(6): 1793-1803. doi: 10.1063/1.1702682
    [34] MEHTA R R, SILVERMAN B D, JACOBS J T. Depolarization fields in thin ferroelectric films[J]. Journal of Applied Physics, 1973, 44(8): 3379-3385. doi: 10.1063/1.1662770
    [35] PERTSEV N A, ZEMBILGOTOV A G, TAGANTSEV A K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films[J]. Physical Review Letters, 1998, 80(9): 1988-1991. doi: 10.1103/PhysRevLett.80.1988
    [36] KUKHAR V G, PERTSEV N A, KOHLSTEDT H, et al. Polarization states of polydomain epitaxial Pb(Zr1-xTix)O3 thin films and their dielectric properties[J]. Physical Review B, 2006, 73(21): 214103. doi: 10.1103/PhysRevB.73.214103
    [37] KIGHELMAN Z, DAMJANOVIC D, CANTONI M, et al. Properties of ferroelectric PbTiO3 thin films[J]. Journal of Applied Physics, 2002, 91(3): 1495-1501. doi: 10.1063/1.1431432
    [38] BOYN S, GIROD S, GARCIA V, et al. High-performance ferroelectric memory based on fully patterned tunnel junctions[J]. Applied Physics Letters, 2014, 104(5): 052909. doi: 10.1063/1.4864100
    [39] DONG Y Z, LU X Y. Multistep polarization switching and reduced coercive field in lead titanate thin films[J]. Physical Review B, 2024, 109(21): 214101. doi: 10.1103/PhysRevB.109.214101
    [40] GERRA G, TAGANTSEV A K, SETTER N, et al. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3[J]. Physical Review Letters, 2006, 96(10): 107603. doi: 10.1103/PhysRevLett.96.107603
    [41] WOO C H, ZHENG Y. Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional[J]. Applied Physics A, 2008, 91(1): 59-63. doi: 10.1007/s00339-007-4355-4
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  55
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-01
  • 修回日期:  2024-09-18
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回