留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低驱动场钙钛矿铁电超薄薄膜设计及其多态隧穿特性

董言哲 路晓艳

董言哲, 路晓艳. 低驱动场钙钛矿铁电超薄薄膜设计及其多态隧穿特性[J]. 应用数学和力学, 2024, 45(10): 1320-1331. doi: 10.21656/1000-0887.450224
引用本文: 董言哲, 路晓艳. 低驱动场钙钛矿铁电超薄薄膜设计及其多态隧穿特性[J]. 应用数学和力学, 2024, 45(10): 1320-1331. doi: 10.21656/1000-0887.450224
DONG Yanzhe, LU Xiaoyan. Design and Multi-State Tunneling Characteristics of Perovskite Ferroelectric Ultrathin Films With Low-Driving Fields[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1320-1331. doi: 10.21656/1000-0887.450224
Citation: DONG Yanzhe, LU Xiaoyan. Design and Multi-State Tunneling Characteristics of Perovskite Ferroelectric Ultrathin Films With Low-Driving Fields[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1320-1331. doi: 10.21656/1000-0887.450224

低驱动场钙钛矿铁电超薄薄膜设计及其多态隧穿特性

doi: 10.21656/1000-0887.450224
基金项目: 

国家自然科学基金(面上项目)(12372148);国家重点研发计划(2021YFF0501001)

详细信息
    作者简介:

    董言哲(1997—),男,硕士(通讯作者. E-mail: dyz121025@163.com);路晓艳(1981—),女,教授,博士,博士生导师(E-mail: Luxy@hit.edu.cn).

    通讯作者:

    董言哲(1997—),男,硕士(通讯作者. E-mail: dyz121025@163.com)

  • 中图分类号: O369

Design and Multi-State Tunneling Characteristics of Perovskite Ferroelectric Ultrathin Films With Low-Driving Fields

Funds: 

The National Science Foundation of China(12372148)

  • 摘要: 铁电隧穿结通常为金属-超薄铁电薄膜-金属三明治结构,利用铁电极化状态调控量子隧穿效应获得不同电阻态,实现数据存储功能.其因读写速度快、功耗低、存储密度高及非易失性存储等特点,成为了新一代信息存储技术重要发展方向.然而,这种超薄铁电薄膜因极化翻转电场大、速度高,往往存在局部温度升高、稳定性降低等问题,因此,进一步降低铁电薄膜驱动电场对铁电隧穿器件设计至关重要.研究表明,铁电薄膜可通过调控衬底应变使其处于多畴共存状态,各畴之间翻转驱动电场随着能量势垒的降低而大幅降低.该文基于WKB近似的电子隧穿理论并结合Landau唯象理论,研究了衬底应变对铁电驱动电场、量子隧穿特性及隧穿电阻开关比的影响.计算结果表明:通过衬底应变调控,经典钙钛矿铁电薄膜PbTiO3和BaTiO3同时存在面外向上、向下极化以及面内极化3种电阻状态,有效驱动电场可降低至25 MV/m,比单畴铁电隧穿结驱动电场减少了76%.研究结果为低能耗、多阻态铁电存储器件设计提供了理论基础.
  • ATHLE R, BORG M. Ferroelectric tunnel junction memristors for in-memory computing accelerators[J].Advanced Intelligent Systems,2024,6(3): 2300554.
    [2]GARCIA V, BIBES M. Ferroelectric tunnel junctions for information storage and processing[J].Nature Communications,2014,5(1): 4289.
    [3]DU X Z, SUN H Y, WANG H, et al. High-speed switching and giant electroresistance in an epitaxial Hf0.5Zr0.5O2-based ferroelectric tunnel junction memristor[J].ACS Applied Materials & Interfaces,2022,14(1): 1355-1361.
    [4]ESAKI A L, LAIBOWITZ R B, STILES P J. Polar switch[J].IBM Technical Disclosure Bulletin,1971,13(8): 2161-2164.
    [5]YANO Y,LIJIMA K, DAITOH Y, et al. Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by reactive evaporation[J].Journal of Applied Physics,1994,76(12): 7833-7838.
    [6]MARUYAMA T, SAITOH M, SAKAI I, et al. Growth and characterization of 10-nm-thickc-axis oriented epitaxial PbZr0.25Ti0.75O3 thin films on (100)Si substrate[J].Applied Physics Letters,1998,73(24): 3524-3526.
    [7]COHEN R E. Origin of ferroelectricity in perovskite oxides[J].Nature,1992,358: 136-138.
    [8]JUNQUERA J, GHOSEZ P. Critical thickness for ferroelectricity in perovskite ultrathin films[J].Nature,2003,422(6931): 506-509.
    [9]FONG D D, STEPHENSON G B, STREIFFER S K, et al. Ferroelectricity in ultrathin perovskite films[J].Science,2004,304(5677): 1650-1653.
    [10]CONTRERAS J R, KOHLSTEDT H, POPPE U, et al. Resistive switching in metal-ferroelectric-metal junctions[J].Applied Physics Letters,2003,83(22): 4595-4597.
    [11]KOHLSTEDT H, PERTSEV N A, CONTRERASJ R, et al. Theoretical current-voltage characteristics of ferroelectric tunnel junctions[J].Physical Review B,2005,72(12): 125341.
    [12]WEN Z, WU D. Ferroelectric tunnel junctions: modulations on the potential barrier[J].Advanced Materials,2020,32(27): 1904123.
    [13]JIA Y Y, YANG Q Q, FANG Y W, et al. Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions[J].Nature Communications,2024,15(1): 693.
    [14]MAX B, HOFFMANN M, MULAOSMANOVIC H, et al. Hafnia-based double-layer ferroelectric tunnel junctions as artificial synapses for neuromorphic computing[J].ACS Applied Electronic Materials,2020,2(12): 4023-4033.
    [15]WANG X, WU M, WEI F S, et al. Electroresistance of Pt/BaTiO3/LaNiO3 ferroelectric tunnel junctions and its dependence on BaTiO3 thickness[J].Materials Research Express,2019,6(4): 046307.
    [16]WANG H, GUAN Z, LI J, et al. Silicon-compatible ferroelectric tunnel junctions with a SiO2/Hf0.5Zr0.5O2 composite barrier as low-voltage and ultra-high-speed memristors[J].Advanced Materials,2024,36(15): 2211305.
    [17]BOYN S, GARCIA V, FUSIL S, et al. Engineering ferroelectric tunnel junctions through potential profile shaping[J].APL Materials,2015,3(6): 061101.
    [18]WEN Z, LI C, WU D, et al. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semi-conductor tunnel junctions[J].Nature Materials,2013,12(7): 617-621.
    [19]LI X Q, LIU J Q, HUANG J Q, et al. Epitaxial strain enhanced ferroelectric polarization toward a giant tunneling electroresistance[J].ACS Nano,2024,18(11): 7989-8001.
    [20]WANG J, JU S, LI Z Y. The converse piezoelectric effect on electrontunnelling across a junction with a ferroelectric-ferromagnetic composite barrier[J].Journal of Physics D: Applied Physics,2010,43(13): 135003.
    [21]LU X Y, CAO W W, JIANG W H, et al. Converse-piezoelectric effect on current-voltage characteristics of symmetric ferroelectric tunnel junctions[J].Journal of Applied Physics,2012,111: 014103.
    [22]SOKOLOV A, BAK O, LU H, et al. Effect of epitaxial strain on tunneling electroresistance in ferroelectric tunnel junctions[J].Nanotechnology,2015,26(30): 305202.
    [23]WANG Z J, GUAN Z Y, SUN H Y, et al. High-speed nanoscale ferroelectric tunnel junction for multilevel memory and neural network computing[J].ACS Applied Materials & Interfaces,2022,14(21): 24602-24609.
    [24]RUAN J J, QIU X B, YUAN Z S, et al. Improved memory functions in multiferroic tunnel junctions with a dielectric/ferroelectric composite barrier[J].Applied Physics Letters,2015,107(23): 232902.
    [25]L W M, LI C J, ZHENG L M, et al. Multi-nonvolatile state resistive switching arising from ferroelectricity and oxygen vacancy migration[J].Advanced Materials,2017,29(24): 1606165.
    [26]DAMODARAN A R, PANDYA S, AGAR J C, et al. Three-state ferroelastic switching and large electromechanical responses in PbTiO3 thin films[J].Advanced Materials,2017,29(37): 1702069.
    [27]LANGENBERG E, PAIK H, SMITH E H, et al. Strain-engineered ferroelastic structures in PbTiO3 films and their control by electric fields[J].ACS Applied Materials & Interfaces,2020,12(18): 20691-20703.
    [28]LU X Y, CHEN Z H, CAO Y, et al. Mechanical-force-induced non-local collective ferroelastic switching in epitaxial lead-titanate thin films[J].Nature Communications,2019,10(1): 3951.
    [29]DONG Y Z, LU X Y, FAN J H, et al. Strain engineering of domain coexistence in epitaxial lead-titanite thin films[J].Coatings,2022,12(4): 542.
    [30]LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J].Science,2019,364(6437): 264-268.
    [31]WANG B, LI F, CHEN L Q. Inverse domain-size dependence of piezoelectricity in ferroelectric crystals[J].Advanced Materials,2021,33(51): 2105071.
    [32]KOUKHAR V G, PERTSEV N A, WASER R. Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures[J].Physical Review B,2001,64(21): 214103.
    [33]SIMMONS J G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J].Journal of Applied Physics,1963,34(6): 1793-1803.
    [34]MEHTA R R, SILVERMAN B D, JACOBS J T. Depolarization fields in thin ferroelectric films[J].Journal of Applied Physics,1973,44(8): 3379-3385.
    [35]PERTSEV N A, ZEMBILGOTOV A G, TAGANTSEV A K. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films[J].Physical Review Letters,1998,80(9): 1988-1991.
    [36]KUKHAR V G, PERTSEV N A, KOHLSTEDT H, et al. Polarization states of polydomain epitaxial Pb(Zr1-xTix)O3 thin films and their dielectric properties[J].Physical Review B,2006,73(21): 214103.
    [37]KIGHELMAN Z, DAMJANOVIC D, CANTONI M, et al. Properties of ferroelectric PbTiO3 thin films[J].Journal of Applied Physics,2002,91(3): 1495-1501.
    [38]BOYN S, GIROD S, GARCIA V, et al. High-performance ferroelectric memory based on fully patterned tunnel junctions[J].Applied Physics Letters,2014,104(5): 052909.
    [39]DONG Y Z, LU X Y. Multistep polarization switching and reduced coercive field in lead titanate thin films[J].Physical Review B,2024,109(21): 214101.
    [40]GERRA G, TAGANTSEV A K, SETTER N, et al. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3[J].Physical Review Letters,2006,96(10): 107603.
    [41]WOO C H, ZHENG Y. Depolarization in modeling nano-scale ferroelectrics using the Landau free energy functional[J].Applied Physics A,2008,91(1): 59-63.
  • 加载中
计量
  • 文章访问数:  52
  • HTML全文浏览量:  14
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-08-01
  • 修回日期:  2204-09-18
  • 网络出版日期:  2024-10-31
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回