留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全涂层非均匀介质外部反散射的传输特征值问题

丁慧 刘立汉

丁慧, 刘立汉. 全涂层非均匀介质外部反散射的传输特征值问题[J]. 应用数学和力学, 2025, 46(6): 781-790. doi: 10.21656/1000-0887.450207
引用本文: 丁慧, 刘立汉. 全涂层非均匀介质外部反散射的传输特征值问题[J]. 应用数学和力学, 2025, 46(6): 781-790. doi: 10.21656/1000-0887.450207
DING Hui, LIU Lihan. The Transmission Eigenvalue Problem of Exterior Inverse Scattering in Fully Coated Inhomogeneous Media[J]. Applied Mathematics and Mechanics, 2025, 46(6): 781-790. doi: 10.21656/1000-0887.450207
Citation: DING Hui, LIU Lihan. The Transmission Eigenvalue Problem of Exterior Inverse Scattering in Fully Coated Inhomogeneous Media[J]. Applied Mathematics and Mechanics, 2025, 46(6): 781-790. doi: 10.21656/1000-0887.450207

全涂层非均匀介质外部反散射的传输特征值问题

doi: 10.21656/1000-0887.450207
基金项目: 

国家自然科学基金青年科学基金 12001075

重庆市自然科学基金面上项目 cstc2020jcyj-msxmX0167

重庆市教育委员会科学技术研究计划项目重点项目 KJZD-K202300506

重庆市教育委员会科学技术研究计划项目重点项目 KJZD-K2021000503

重庆市留学人员回国创业创新支持计划 cx2021061

重庆市留学人员回国创业创新支持计划 cx2019022

重庆市巴渝学者计划 BYQNCS2020002

重庆市高校创新研究群体项目 CXQT20014

详细信息
    作者简介:

    丁慧(1999—),女,硕士生(E-mail: dinghuidddh@163.com)

    通讯作者:

    刘立汉(1987—),男,教授,博士,硕士生导师(通讯作者. E-mail: 20132130@cqnu.edu.cn)

  • 中图分类号: O29

The Transmission Eigenvalue Problem of Exterior Inverse Scattering in Fully Coated Inhomogeneous Media

  • 摘要: 研究了具有全涂层边界条件的非均匀介质外部反散射的传输特征值问题. 首先,根据经典过程建立了四阶非线性公式,利用Lax-Milgram定理及Fredholm理论证明了全涂层非均匀介质外部反散射传输特征值的存在性和离散性. 其次,通过一个带有辅助变量的等价混合公式,将问题转换为线性特征值问题,利用Riesz表示定理、Rellich紧性定理等构造了恰当的算子,再利用Cauchy收敛准则、Brezzi理论、Poincaré不等式证明了算子的紧性和强制性.
  • [1] CAKONI F, ÇAYÖREN M, COLTON D. Transmission eigenvalues and the nondestructive testing of dielectrics[J]. Inverse Problems, 2008, 24 (6): 065016.
    [2] CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2010, 42 (1): 237-255.
    [3] COLTON D, KRESS R. Inverse Acoustic and Electromagnetic Scattering Theory[M]. Berlin: Springer, 2019.
    [4] CAKONI F, COLTON D, HADDAR H. Inverse Scattering Theory and Transmission Eigenvalues[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2016.
    [5] SYLVESTER J. Discreteness of transmission eigenvaluesvia upper triangular compact operators[J]. SIAM Journal on Mathematical Analysis, 2012, 44 (1): 341-354.
    [6] 张亚林. 逆散射理论中传播特征值问题的若干结果[D]. 天津: 天津大学, 2015.

    ZHANG Yalin. Some results on the transmission eigenvalue problem in inverse scattering theory[D]. Tianjin: Tianjin University, 2015. (in Chinese)
    [7] COLTON D, LEUNG Y J. Complex eigenvalues and the inverse spectral problem for transmission eigenvalues[J]. Inverse Problems, 2013, 29 (10): 104008.
    [8] ROBBIANO L. Spectral analysis of the interior transmission eigenvalue problem[J]. Inverse Problems, 2013, 29 (10): 104001.
    [9] CAKONI F, COLTON D, MONK P. The determination of the surface conductivity of a partially coated dielectric[J]. SIAM Journal on Applied Mathematics, 2005, 65 (3): 767-789.
    [10] 陈林冲, 李小林. 二维Helmholtz方程的插值型边界无单元法[J]. 应用数学和力学, 2018, 39 (4): 470-484. doi: 10.21656/1000-0887.380202

    CHEN Linchong, LI Xiaolin. An interpolating boundary element-free method for 2D Helmholtz equations[J]. Applied Mathematics and Mechanics, 2018, 39 (4): 470-484. (in Chinese) doi: 10.21656/1000-0887.380202
    [11] LIU Q, LI T X, ZHANG S. A mixed element scheme for the Helmholtz transmission eigenvalue problem for anisotropic media[J]. Inverse Problems, 2023, 39 (5): 055005.
    [12] 戴海, 潘文峰. 谱元法求解Helmholtz方程透射特征值问题[J]. 应用数学和力学, 2018, 39 (7): 833-840. doi: 10.21656/1000-0887.380327

    DAI Hai, PAN Wenfeng. A spectral element method for transmission eigenvalue problems of the Helmholtz equation[J]. Applied Mathematics and Mechanics, 2018, 39 (7): 833-840. (in Chinese) doi: 10.21656/1000-0887.380327
    [13] BONDARENKO O, HARRIS I, KLEEFELD A. The interior transmission eigenvalue problem for an inhomogeneous media with a conductive boundary[J]. Applicable Analysis, 2017, 96 (1): 2-22.
    [14] HARRIS I. Analysis of two transmission eigenvalue problems with a coated boundary condition[J]. Applicable Analysis, 2021, 100 (9): 1996-2019.
    [15] XIANG J, YAN G. The interior transmission eigenvalue problem for an anisotropic medium by a partially coated boundary[J]. Acta Mathematica Scientia, 2024, 44 (1): 339-354.
    [16] SUN J, ZHOU A. Finite Element Methods for Eigenvalue Problems[M]. New York: Chapman and Hall, 2016.
  • 加载中
计量
  • 文章访问数:  44
  • HTML全文浏览量:  11
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-12
  • 修回日期:  2024-09-03
  • 刊出日期:  2025-06-01

目录

    /

    返回文章
    返回