留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维准晶平面问题中的Hamilton体系求解方法

李彤 屈建龙 王炜 王晨龙 徐新生

李彤, 屈建龙, 王炜, 王晨龙, 徐新生. 二维准晶平面问题中的Hamilton体系求解方法[J]. 应用数学和力学, 2024, 45(11): 1359-1371. doi: 10.21656/1000-0887.450204
引用本文: 李彤, 屈建龙, 王炜, 王晨龙, 徐新生. 二维准晶平面问题中的Hamilton体系求解方法[J]. 应用数学和力学, 2024, 45(11): 1359-1371. doi: 10.21656/1000-0887.450204
LI Tong, QU Jianlong, WANG Wei, WANG Chenlong, XU Xinsheng. A Hamiltonian System Solution Method for Planar Problems of 2D Quasicrystals[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1359-1371. doi: 10.21656/1000-0887.450204
Citation: LI Tong, QU Jianlong, WANG Wei, WANG Chenlong, XU Xinsheng. A Hamiltonian System Solution Method for Planar Problems of 2D Quasicrystals[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1359-1371. doi: 10.21656/1000-0887.450204

二维准晶平面问题中的Hamilton体系求解方法

doi: 10.21656/1000-0887.450204
详细信息
    作者简介:

    李彤(1998—),女,博士(E-mail: litong1998@mail.dlut.edu.cn)

    通讯作者:

    徐新生(1957—),男,教授,博士,博士生导师(通讯作者. E-mail: xsxu@dlut.edu.cn)

  • 中图分类号: O343.1

A Hamiltonian System Solution Method for Planar Problems of 2D Quasicrystals

  • 摘要: 针对二维准晶平面问题,该文通过导入Hamilton体系,将问题转化为Hamilton体系下的辛本征值和辛本征解问题,即问题的解可由辛本征解组成的级数表示. 利用辛本征解之间的辛共轭正交关系,可将满足边界条件的解问题归结为代数方程组的求解问题,从而形成一种解析求解方法. 这种方法可直接推广到求解混合边界条件及分段边界条件问题中.
  • 图  1  收敛性分析

    Figure  1.  The convergence study

    图  2  声子场位移对比

    Figure  2.  Comparison of phonon field displacements

    图  3  广义应力分布

    Figure  3.  Generalized stress distributions

    图  4  广义位移分布

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Generalized displacement distributions

    图  5  相关广义应力分布

    Figure  5.  Correlative generalized stress distributions

    图  6  零本征值本征解和非零本征值本征解的作用

    Figure  6.  The effects of zero-eigenvalue eigensolutions and non zero-eigenvalue eigensolutions

  • [1] 范天佑. 准晶数学弹性理论和某些有关研究的进展(上)[J]. 力学进展, 2012, 42 (5): 501-521.

    FAN Tianyou. Development on mathematical theory of elasticity of quasicrystals and some relevant topics (Ⅰ)[J]. Advances in Mechanics, 2012, 42 (5): 501-521. (in Chinese)
    [2] 范天佑. 准晶数学弹性理论和某些有关研究的进展(下)[J]. 力学进展, 2012, 42 (6): 675-691.

    FAN Tianyou. Development on mathematical theory of elasticity of quasicrystals and some relevant topics (Ⅱ)[J]. Advances in Mechanics, 2012, 42 (6): 675-691. (in Chinese)
    [3] DUBOIS J M. New prospects from potential applications of quasicrystalline materials[J]. Materials Science and Engineering: A, 2000, 294/296 : 4-9. doi: 10.1016/S0921-5093(00)01305-8
    [4] AMINI M, RAHIMIPOUR M R, TAYEBIFARD S A, et al. Towards physical and mechanical properties of the novel Al-Cr-Ni-Fe decagonal quasicrystal and crystalline approximants[J]. Advanced Powder Technology, 2022, 33 (2): 103383. doi: 10.1016/j.apt.2021.12.002
    [5] TAKAGIWA Y, MAEDA R, OHHASHI S, et al. Reduction of thermal conductivity for icosahedral Al-Cu-Fe quasicrystal through heavy element substitution[J]. Materials, 2021, 14 (18): 5238. doi: 10.3390/ma14185238
    [6] STROUD R M, VIANO A M, GIBBONS P C, et al. Stable Ti-based quasicrystal offers prospect for improved hydrogen storage[J]. Applied Physics Letters, 1996, 69 (20): 2998-3000. doi: 10.1063/1.117756
    [7] 康国政, 陈义甫, 黄伟洋. 介电高弹体的力-电耦合循环变形和疲劳失效行为研究[J]. 力学进展, 2023, 53 (3): 592-625.

    KANG Guozheng, CHEN Yifu, HUANG Weiyang. Review on electro-mechanically coupled cyclic deformation and fatigue failure behavior of dielectric elastomers[J]. Advances in Mechanics, 2023, 53 (3): 592-625. (in Chinese)
    [8] JARIĆ M V, NELSON D R. Diffuse scattering from quasicrystals[J]. Physical Review B, 1988. DOI: 10.1103/PhysRevB.37.4458.
    [9] FAN Tianyou. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Berlin: Springer, 2011.
    [10] DING D H, YANG W G, HU C Z, et al. Generalized elasticity theory of quasicrystals[J]. Physical Review B: Covering Condensed Matter and Materials Physics, 1993, 48 (10): 7003-7010. doi: 10.1103/PhysRevB.48.7003
    [11] FAN T Y, GUO L H. The final governing equation and fundamental solution of plane elasticity of icosahedral quasicrystals[J]. Physics Letters A, 2005, 341 (1/4): 235-239.
    [12] GAO Y, SHANG L G. Governing equations and general solutions of plane elasticity of two-dimensional decagonal quasicrystals[J]. International Journal of Modern Physics B, 2011, 25 (20): 2769-2778. doi: 10.1142/S0217979211101065
    [13] ZHANG Liangliang, YANG Lianzhi, YU Lianying, et al. General solutions of thermoelastic plane problems of two-dimensional quasicrystals[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 31 (2): 142-146.
    [14] ZHAO X F, LI X, DING S H. Two kinds of contact problems in three-dimensional icosahedral quasicrystals[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36 (12): 1569-1580. doi: 10.1007/s10483-015-2006-6
    [15] 李光芳, 刘昉昉, 于静, 等. 立方准晶压电材料的半空间问题[J]. 应用数学和力学, 2023, 44 (7): 825-833. doi: 10.21656/1000-0887.430221

    LI Guangfang, LIU Fangfang, YU Jing, et al. The half space problem of cubic quasicrystal piezoelectric materials[J]. Applied Mathematics and Mechanics, 2023, 44 (7): 825-833. (in Chinese) doi: 10.21656/1000-0887.430221
    [16] 杨震霆, 王雅静, 聂雪阳, 等. 含切口的压电准晶组合结构界面断裂分析的辛-等几何耦合方法[J]. 应用数学和力学, 2024, 45 (2): 144-154. doi: 10.21656/1000-0887.440247

    YANG Zhenting, WANG Yajing, NIE Xueyang, et al. Symplectic isogeometric analysis coupling method for interfacial fracture of piezoelectric quasicrystal composites with notches[J]. Applied Mathematics and Mechanics, 2024, 45 (2): 144-154. (in Chinese) doi: 10.21656/1000-0887.440247
    [17] FENG X, ZHANG L L, LI Y, et al. On the propagation of plane waves in cubic quasicrystal plates with surface effects[J]. Physics Letters A, 2023, 473 : 128807. doi: 10.1016/j.physleta.2023.128807
    [18] 原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024, 45 (2): 208-219. doi: 10.21656/1000-0887.440260

    YUAN Qingdan, GUO Junhong. Nonlocal vibration, buckling and bending of 1D layered quasicrystal nanobeams[J]. Applied Mathematics and Mechanics, 2024, 45 (2): 208-219. (in Chinese) doi: 10.21656/1000-0887.440260
    [19] 范俊杰, 李联和, 阿拉坦仓. 对边简支十次对称二维准晶板弯曲问题的辛分析[J]. 应用数学和力学, 2023, 44 (7): 834-846. doi: 10.21656/1000-0887.430267

    FAN Junjie, LI Lianhe, ALATANCANG. Symplectic analysis on the bending problem of decagonal symmetric 2D quasicrystal plates with 2 opposite edges simply supported[J]. Applied Mathematics and Mechanics, 2023, 44 (7): 834-846. (in Chinese) doi: 10.21656/1000-0887.430267
    [20] 王会苹, 王桂霞, 陈德财. 含椭圆孔有限大二十面体准晶板平面弹性问题的边界元分析[J]. 应用数学和力学, 2024, 45 (4): 400-415. doi: 10.21656/1000-0887.440241

    WANG Huiping, WANG Guixia, CHEN Decai. Boundary element analysis for the plane elasticity problems of finite icosahedral quasicrystal plates containing elliptical holes[J]. Applied Mathematics and Mechanics, 2024, 45 (4): 400-415. (in Chinese) doi: 10.21656/1000-0887.440241
    [21] ZHU S B, TONG Z Z, LI Y Q, et al. Post-buckling of two-dimensional decagonal piezoelectric quasicrystal cylindrical shells under compression[J]. International Journal of Mechanical Sciences, 2022, 235 : 107720. doi: 10.1016/j.ijmecsci.2022.107720
    [22] ZHONG W X. Duality System in Applied Mechanics and Optimal Control[M]. Boston: Kluwer Academic Publishers, 2004.
    [23] WANG H, LI L H, HUANG J J, et al. Symplectic approach for the plane elasticity problem of quasicrystals with point group 10 mm[J]. Applied Mathematical Modelling, 2015, 39 (12): 3306-3316. doi: 10.1016/j.apm.2014.10.060
    [24] QIAO Y F, HOU G L, CHEN A. Symplectic approach for plane elasticity problems of two-dimensional octagonal quasicrystals[J]. Applied Mathematics and Computation, 2021, 400 : 126043. doi: 10.1016/j.amc.2021.126043
    [25] SUN Z Q, HOU G L, QIAO Y F, et al. Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions[J]. Chinese Physics B, 2024, 33 (1): 016107. doi: 10.1088/1674-1056/acfaf3
    [26] LI G F, LI L H. An analysis method of symplectic dual system for decagonal quasicrystal plane elasticity and application[J]. Crystals, 2022, 12 (5): 636. doi: 10.3390/cryst12050636
    [27] 郭丽辉, 范天佑. 准晶弹性理论边值问题的可解性[J]. 应用数学和力学, 2007, 28 (8): 949-957. http://www.applmathmech.cn/article/id/952

    GUO Lihui, FAN Tianyou. Solvability on boundary-value problems of elasyicity of three-dimensional quasicrystals[J]. Applied Mathematics and Mechanics, 2007, 28 (8): 949-957. (in Chinese) http://www.applmathmech.cn/article/id/952
    [28] CAO H B, SHI Y Q, LI W. Analytic solutions to two-dimensional decagonal quasicrystals with defects using complex potential theory[J]. Crystals, 2019, 9 (4): 209. doi: 10.3390/cryst9040209
    [29] LI W, FAN T Y. Plastic analysis of the crack problem in two-dimensional decagonal Al-Ni-Co quasicrystalline materials of point group[J]. Chinese Physics B, 2011, 20 (3): 036101. doi: 10.1088/1674-1056/20/3/036101
    [30] LI T, YANG Z T, XU C H, et al. A phase field approach to two-dimensional quasicrystals with mixed mode cracks[J]. Materials, 2023, 16 (10): 3628. doi: 10.3390/ma16103628
  • 加载中
图(6)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  58
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-08-16
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回