留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑表面效应的压电半导体梁的静态屈曲行为研究

詹春晓 李孝宝 王美芹

詹春晓, 李孝宝, 王美芹. 考虑表面效应的压电半导体梁的静态屈曲行为研究[J]. 应用数学和力学, 2024, 45(10): 1300-1312. doi: 10.21656/1000-0887.450200
引用本文: 詹春晓, 李孝宝, 王美芹. 考虑表面效应的压电半导体梁的静态屈曲行为研究[J]. 应用数学和力学, 2024, 45(10): 1300-1312. doi: 10.21656/1000-0887.450200
ZHAN Chunxiao, LI Xiaobao, WANG Meiqin. Static Buckling Behaviors of Piezoelectric Semiconductor Beams With Steigmann-Ogden Surface Effects[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1300-1312. doi: 10.21656/1000-0887.450200
Citation: ZHAN Chunxiao, LI Xiaobao, WANG Meiqin. Static Buckling Behaviors of Piezoelectric Semiconductor Beams With Steigmann-Ogden Surface Effects[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1300-1312. doi: 10.21656/1000-0887.450200

考虑表面效应的压电半导体梁的静态屈曲行为研究

doi: 10.21656/1000-0887.450200
基金项目: 

安徽省自然科学基金 2208085MA17

详细信息
    作者简介:

    詹春晓(1970—),男,副教授,博士(E-mail: zhanchunxiao@hfut.edu.cn)

    通讯作者:

    李孝宝(1985—),男,研究员,博士(通讯作者. E-mail: xiaobaoli@hfut.edu.cn)

  • 中图分类号: O34

Static Buckling Behaviors of Piezoelectric Semiconductor Beams With Steigmann-Ogden Surface Effects

  • 摘要: 鉴于表面效应和挠曲电效应对纳米材料或结构的力学行为具有显著影响,以纳米尺度压电半导体(PS)梁为研究对象,根据Hamilton变分原理,推导建立了考虑Steigmann-Ogden表面弹性效应和挠曲电效应的Euler-Bernoulli梁理论模型和相应的边界条件. 结合电荷守恒方程和线性漂移扩散方程,研究了该梁结构的静态屈曲行为,得到了短路和开路条件下梁结构的等效弹性常数和屈曲临界压力的解析解. 详细分析了表面效应、尺寸效应、挠曲电效应以及载流子屏蔽效应等因素对梁结构的等效弹性常数的影响规律和作用机制. 该文的研究结果对基于纳米压电半导体梁结构电子器件的设计和应用具有指导作用.
  • 图  1  n型压电半导体梁结构示意图

    Figure  1.  The sketch of an n-type piezoelectric semiconductor beam

    图  2  等效弹性常数对表面弹性常数c11s的依赖规律

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The dimensionless effective elastic constants vs. GM surface elastic constant c11s

    图  3  等效弹性常数随矩形截面梁高度h的变化

    Figure  3.  The dimensionless effective elastic constants vs. height h

    图  4  Γ1Γ2n0h的变化

    Figure  4.  Dependences of Γ1 and Γ2 on n0 and h

    表  1  短路条件下屈曲临界应力(σcr/MPa)

    Table  1.   Critical buckling stresses (σcr/MPa), for the short circuit condition

    h/nm c11s/(N/m) l/h
    10 20 50 100
    10 -81.97 1 304.3 326.08 52.173 13.043
    81.97 2 154.2 538.56 86.169 21.542
    50 -81.97 1 641.7 410.43 65.669 16.417
    81.97 1 805.4 451.35 72.217 18.054
    下载: 导出CSV

    表  2  开路条件下屈曲临界应力(σcr/MPa)

    Table  2.   Critical buckling stresses (σcr/MPa), for the open circuit condition

    h/nm c11s/(N/m) l/h
    10 20 50 100
    10 -81.97 1 316.1 329.02 52.643 13.161
    81.97 2 166.0 541.49 86.639 21.660
    50 -81.97 1 641.9 410.48 65.677 16.419
    81.97 1 805.6 451.41 72.225 18.056
    下载: 导出CSV
  • [1] WANG Z L, WU W, FALCONI C, et al. Piezotronics and piezo-phototronics with third-generation semiconductors[J]. MRS Bulletin, 2018, 43(12): 922-927. doi: 10.1557/mrs.2018.263
    [2] WANG Z L. Progress in piezotronics and piezo-phototronics[J]. Advanced Materials, 2012, 24(34): 4632-4646. doi: 10.1002/adma.201104365
    [3] ZHANG G, SHEN S. Analysis of electromechanical couplings and nonlinear carrier transport in flexoelectric semiconductors[J]. Journal of Physics D: Applied Physics, 2023, 56(32): 325102. doi: 10.1088/1361-6463/accd04
    [4] WANG G, LIU J, LIU X, et al. Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber[J]. Journal of Applied Physics, 2018, 124(9): 094502. doi: 10.1063/1.5048571
    [5] SUN L, ZHANG Z, GAO C, et al. Effect of flexoelectricity on piezotronic responses of a piezoelectric semiconductor bilayer[J]. Journal of Applied Physics, 2021, 129(24): 244102. doi: 10.1063/5.0050947
    [6] LIANG C, ZHANG C, CHEN W, et al. Static buckling of piezoelectric semiconductor fibers[J]. Materials Research Express, 2020, 6(12): 125919. doi: 10.1088/2053-1591/ab663b
    [7] DAI X, ZHU F, QIAN Z, et al. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration[J]. Nano Energy, 2018, 43: 22-28. doi: 10.1016/j.nanoen.2017.11.002
    [8] HE J H, HSIN C L, LIU J, et al. Piezoelectric gated diode of a single ZnO nanowire[J]. Advanced Materials, 2007, 19(6): 781-784. doi: 10.1002/adma.200601908
    [9] WANG X, ZHOU J, SONG J, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire[J]. Nano Letters, 2006, 6(12): 2768-2772. doi: 10.1021/nl061802g
    [10] FEI P, YEH P H, ZHOU J, et al. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire[J]. Nano Letters, 2009, 9(10): 3435-3439. doi: 10.1021/nl901606b
    [11] ZHOU J, GU Y, FEI P, et al. Flexible piezotronic strain sensor[J]. Nano Letters, 2008, 8(9): 3035-3040. doi: 10.1021/nl802367t
    [12] ZHANG J, ZHOU J. Humidity-dependent piezopotential properties of zinc oxide nanowires: insights from atomic-scale modelling[J]. Nano Energy, 2018, 50: 298-307. doi: 10.1016/j.nanoen.2018.05.054
    [13] LAO C S, KUANG Q, WANG Z L, et al. Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors[J]. Applied Physics Letters, 2007, 90(26): 262107. doi: 10.1063/1.2748097
    [14] WANG Z L, SONG J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. doi: 10.1126/science.1124005
    [15] SONG J, ZHOU J, WANG Z L. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment[J]. Nano Letters, 2006, 6(8): 1656-1662. doi: 10.1021/nl060820v
    [16] GAO Y, WANG Z L. Electrostatic potential in a bent piezoelectric nanowire. the fundamental theory of nanogenerator and nanopiezotronics[J]. Nano Letters, 2007, 7(8): 2499-2505. doi: 10.1021/nl071310j
    [17] DENG Q, KAMMOUN M, ERTURK A, et al. Nanoscale flexoelectric energy harvesting[J]. International Journal of Solids and Structures, 2014, 51(18): 3218-3225. doi: 10.1016/j.ijsolstr.2014.05.018
    [18] MOURA A G, ERTURK A. Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic dielectrics[J]. Journal of Applied Physics, 2017, 121(6): 064110. doi: 10.1063/1.4976069
    [19] QU Y, JIN F, YANG J. Buckling of flexoelectric semiconductor beams[J]. Acta Mechanica, 2021, 232(7): 2623-2633. doi: 10.1007/s00707-021-02960-3
    [20] LEE D, NOH T W. Giant flexoelectric effect through interfacial strain relaxation[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1977): 4944-4957. doi: 10.1098/rsta.2012.0200
    [21] LEE D. Flexoelectricity in thin films and membranes of complex oxides[J]. APL Materials, 2020, 8(9): 090901. doi: 10.1063/5.0020212
    [22] MAJDOUB M S, SHARMA P, CAGIN T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect[J]. Physical Review B, 2008, 77(12): 125424. doi: 10.1103/PhysRevB.77.125424
    [23] MAJDOUB M S, SHARMA P, ÇAGIN T. Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures[J]. Physical Review B, 2008, 78(12): 121407. doi: 10.1103/PhysRevB.78.121407
    [24] ZHOU Z D, YANG C P, SU Y X, et al. Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect[J]. Smart Materials and Structures, 2017, 26(9): 095025. doi: 10.1088/1361-665X/aa7936
    [25] ZHANG Z, JIANG L. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity[J]. Journal of Applied Physics, 2014, 116(13): 134308. doi: 10.1063/1.4897367
    [26] 鲁双, 李东波, 陈晶博, 等. 考虑挠曲电与温度效应的Mindlin-Medick板理论及其应用[J]. 应用数学和力学, 2023, 44(9): 1122-1133. doi: 10.21656/1000-0887.440017

    LU Shuang, LI Dongbo, CHEN Jingbo, et al. The Mindlin-Medick plate theory and its application under flexoelectricity and temperature effects[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1122-1133. (in Chinese) doi: 10.21656/1000-0887.440017
    [27] ZHAO M, LIU X, FAN C, et al. Theoretical analysis on the extension of a piezoelectric semi-conductor nanowire: effects of flexoelectricity and strain gradient[J]. Journal of Applied Physics, 2020, 127(8): 085707. doi: 10.1063/1.5131388
    [28] ZHAO M, NIU J, LU C, et al. Effects of flexoelectricity and strain gradient on bending vibration characteristics of piezoelectric semiconductor nanowires[J]. Journal of Applied Physics, 2021, 129(16): 164301. doi: 10.1063/5.0038782
    [29] FANG K, LI P, QIAN Z. Static and dynamic analysis of a piezoelectric semiconductor cantilever under consideration of flexoelectricity and strain gradient elasticity[J]. Acta Mechanica Solida Sinica, 2021, 34(5): 673-686. doi: 10.1007/s10338-021-00236-w
    [30] WANG K F, WANG B L. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization[J]. Nanotechnology, 2018, 29(25): 255405. doi: 10.1088/1361-6528/aab970
    [31] QU Y, JIN F, YANG J. Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors[J]. Journal of Applied Physics, 2020, 127(19): 194502. doi: 10.1063/5.0005124
    [32] GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces[J]. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291-323. doi: 10.1007/BF00261375
    [33] GURTIN M E, MURDOCH A I. Surface stress in solids[J]. International Journal of Solids and Structures, 1978, 14(6): 431-440. doi: 10.1016/0020-7683(78)90008-2
    [34] STEIGMANN D J, OGDEN R W. Plane deformations of elastic solids with intrinsic boundary elasticity[J]. Proceedings of the Royal Society of London (Series A): Mathematical, Physical and Engineering Sciences, 1997, 453(1959): 853-877. doi: 10.1098/rspa.1997.0047
    [35] CHHAPADIA P, MOHAMMADI P, SHARMA P. Curvature-dependent surface energy and implications for nanostructures[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(10): 2103-2115. doi: 10.1016/j.jmps.2011.06.007
    [36] MOHAMMADI P, SHARMA P. Atomistic elucidation of the effect of surface roughness on curvature-dependent surface energy, surface stress, and elasticity[J]. Applied Physics Letters, 2012, 100(13): 133110-133113. doi: 10.1063/1.3695069
    [37] LIANG X, HU S, SHEN S. Effects of surface and flexoelectricity on a piezoelectric nanobeam[J]. Smart Materials and Structures, 2014, 23(3): 035020. doi: 10.1088/0964-1726/23/3/035020
    [38] 周强, 张志纯, 龙志林, 等. 考虑表面效应的压电纳米梁的振动研究[J]. 应用数学和力学, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330

    ZHOU Qiang, ZHANG Zhichun, LONG Zhilin, et al. Vibration of piezoelectric nanobeams with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. (in Chinese) doi: 10.21656/1000-0887.400330
    [39] WANG G F, FENG X Q. Effects of surface stresses on contact problems at nanoscale[J]. Journal of Applied Physics, 2007, 101(1): 013510. doi: 10.1063/1.2405127
    [40] 赵婕燕, 杨海兵. 表面效应对热电材料中纳米孔周围热应力的影响[J]. 应用数学和力学, 2023, 44(11): 1311-1324. doi: 10.21656/1000-0887.440151

    ZHAO Jieyan, YANG Haibing. Surface effects on thermal stresses around the nanohole in thermoelectric material[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1311-1324. (in Chinese) doi: 10.21656/1000-0887.440151
    [41] 冯国益, 肖俊华, 苏梦雨. 考虑表面效应时孔边均布径向多裂纹Ⅲ型断裂力学分析[J]. 应用数学和力学, 2020, 41(4): 376-385. doi: 10.21656/1000-0887.400177

    FENG Guoyi, XIAO Junhua, SU Mengyu. Fracture mechanics analysis of mode-Ⅲ radial multi cracks on the edge of a hole with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(4): 376-385. (in Chinese) doi: 10.21656/1000-0887.400177
    [42] YAO Y, CHEN S. Buckling behavior of nanowires predicted by a new surface energy density model[J]. Acta Mechanica, 2016, 227(7): 1799-1811. doi: 10.1007/s00707-016-1597-2
    [43] WANG G F, FENG X Q. Timoshenko beam model for buckling and vibration of nanowires with surface effects[J]. Journal of Physics D: Applied Physics, 2009, 42(15): 155411. doi: 10.1088/0022-3727/42/15/155411
    [44] ANSARI R, SAHMANI S. Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories[J]. International Journal of Engineering Science, 2011, 49(11): 1244-1255. doi: 10.1016/j.ijengsci.2011.01.007
    [45] CHALLAMEL N, ELISHAKOFF I. Surface stress effects may induce softening: Euler-Bernoulli and Timoshenko buckling solutions[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44(9): 1862-1867. doi: 10.1016/j.physe.2012.05.019
    [46] LIANG X, HU S, SHEN S. Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity[J]. Smart Materials and Structures, 2015, 24(10): 105012. doi: 10.1088/0964-1726/24/10/105012
    [47] ALIBEIGI B, BENI Y T, MEHRALIAN F. On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams[J]. The European Physical Journal Plus, 2018, 133(3): 133. doi: 10.1140/epjp/i2018-11954-7
    [48] SAMANI M S E, BENI Y T. Size dependent thermo-mechanical buckling of the flexoelectric nanobeam[J]. Materials Research Express, 2018, 5(8): 085018. doi: 10.1088/2053-1591/aad2ca
    [49] JI L W, YOUNG S J, FANG T H, et al. Buckling characterization of vertical ZnO nanowires using nanoindentation[J]. Applied Physics Letters, 2007, 90(3): 033109. doi: 10.1063/1.2431785
    [50] RIAZ M, FULATI A, AMIN G, et al. Buckling and elastic stability of vertical ZnO nanotubes and nanorods[J]. Journal of Applied Physics, 2009, 106(3): 034309. doi: 10.1063/1.3190481
    [51] ZHANG J, WANG C, ADHIKARI S. Fracture and buckling of piezoelectric nanowires subject to an electric field[J]. Journal of Applied Physics, 2013, 114(17): 174306. doi: 10.1063/1.4829277
    [52] WANG G F, FENG X Q. Effect of surface stresses on the vibration and buckling of piezoelectric nanowires[J]. Europhysics Letters, 2010, 91(5): 56007. doi: 10.1209/0295-5075/91/56007
    [53] ZHANG Z, LIANG C, KONG D, et al. Dynamic buckling and free bending vibration of axially compressed piezoelectric semiconductor rod with surface effect[J]. International Journal of Mechanical Sciences, 2023, 238: 107823. doi: 10.1016/j.ijmecsci.2022.107823
    [54] WANG Z, HU Q, ZHAO J, et al. Failure mode transformation of ZnO nanowires under uniaxial compression: from phase transition to buckling[J]. Nanotechnology, 2019, 30(37): 375702. doi: 10.1088/1361-6528/ab269e
    [55] FAN S, LIANG Y, XIE J, et al. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance, part Ⅰ: linearized analysis[J]. Nano Energy, 2017, 40: 82-87. doi: 10.1016/j.nanoen.2017.07.049
    [56] TIMOSHENKO S. Theory of Elastic Stability[M]. 2nd ed. New York: McGraw-Hill, 1961.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  52
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-09-15
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回