留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驻极体薄膜揉皱变形理论及类挠曲电响应研究

刘曜华 李俊 冯晓满 马建华 王炳雷

刘曜华, 李俊, 冯晓满, 马建华, 王炳雷. 驻极体薄膜揉皱变形理论及类挠曲电响应研究[J]. 应用数学和力学, 2024, 45(11): 1392-1404. doi: 10.21656/1000-0887.450195
引用本文: 刘曜华, 李俊, 冯晓满, 马建华, 王炳雷. 驻极体薄膜揉皱变形理论及类挠曲电响应研究[J]. 应用数学和力学, 2024, 45(11): 1392-1404. doi: 10.21656/1000-0887.450195
LIU Yaohua, LI Jun, FENG Xiaoman, MA Jianhua, WANG Binglei. Study on the Electret Film Crumpling Deformation Theory and Flexoelectric-Like Responses[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1392-1404. doi: 10.21656/1000-0887.450195
Citation: LIU Yaohua, LI Jun, FENG Xiaoman, MA Jianhua, WANG Binglei. Study on the Electret Film Crumpling Deformation Theory and Flexoelectric-Like Responses[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1392-1404. doi: 10.21656/1000-0887.450195

驻极体薄膜揉皱变形理论及类挠曲电响应研究

doi: 10.21656/1000-0887.450195
基金项目: 

黄河流域协同科技创新项目 YDZX2023025

详细信息
    作者简介:

    刘曜华(2001—),男(E-mail: lyhzh2001@163.com)

    通讯作者:

    王炳雷(1980—),男,副教授,博士,博士生导师(通讯作者. E-mail: bwang@sdu.edu.cn)

Study on the Electret Film Crumpling Deformation Theory and Flexoelectric-Like Responses

  • 摘要: 现有挠曲电俘能器存在俘能方式单一、力电耦合系数偏小,且仅在微观尺度显著等问题,难以在宏观尺度上实现高效的能量转换. 驻极体作为一种内嵌电荷的介电材料,其非均匀变形可诱导显著的类挠曲电响应. 薄膜揉皱作为一种双向收缩的复杂变形,其高应变梯度为宏观尺度下高效俘能提供了新方式. 该文将驻极体宏观尺度下的强力电耦合特性与揉皱的高应变梯度优势相结合,建立了驻极体薄膜揉皱变形理论,基于该模型分析了不同电荷密度、支撑杯半径、薄膜厚度、放缩尺度下揉皱驻极体的类挠曲电响应及能量俘获特性. 结果表明,对于厚度为1 mm的驻极体薄膜,当电荷密度q=-0.2 mC · m-2时,有效类挠曲电强度相比纯聚二甲基硅氧烷(PDMS)薄膜的本征挠曲电效应高了近两个数量级.
  • 图  1  揉皱驻极体薄膜示意图

    Figure  1.  Schematic of the crumpled electret film

    图  2  驻极体薄膜无穷小元件的变形示意图

    Figure  2.  Schematic of the deformed electret element

    图  3  揉皱膜示意图

    Figure  3.  Schematic of a crumpled film

    图  4  感应有效电压与无量纲尖端挠度的关系

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  The induced effective voltage vs. the dimensionless tip deflection

    图  5  感应有效电压与支撑杯半径的关系

    Figure  5.  The induced effective voltage vs. the radius of the support cup

    图  6  各关键参数与无量纲尖端挠度的关系

    Figure  6.  The relationships between the key parameters and the dimensionless tip deflections

    图  7  揉皱驻极体薄膜的尺寸效应

    Figure  7.  The size effects of the crumpled electret

  • [1] KRICHEN S, SHARMA P. Flexoelectricity: a perspective on an unusual electromechanical coupling[J]. Journal of Applied Mechanics, 2016, 83 (3): 030801. doi: 10.1115/1.4032378
    [2] AHMADPOOR F, SHARMA P. Flexoelectricity in two-dimensional crystalline and biological membranes[J]. Nanoscale, 2015, 7 (40): 16555-16570. doi: 10.1039/C5NR04722F
    [3] DENG Q, LIU L P, SHARMA P. Flexoelectricity in soft materials and biological membranes[J]. Journal of the Mechanics and Physics of Solids, 2014, 62 : 209-227. doi: 10.1016/j.jmps.2013.09.021
    [4] MA W H, CROSS L E. Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics[J]. Applied Physics Letters, 2001, 78 (19): 2920-2921. doi: 10.1063/1.1356444
    [5] MAO S, PUROHIT P K. Defects in flexoelectric solids[J]. Journal of the Mechanics and Physics of Solids, 2015, 84 : 95-115. doi: 10.1016/j.jmps.2015.07.013
    [6] MAO S, PUROHIT P K. Insights into flexoelectric solids from strain-gradient elasticity[J]. Journal of Applied Mechanics, 2014, 81 (8): 081004. doi: 10.1115/1.4027451
    [7] CATALAN G, LUBK A, VLOOSWIJK A H G, et al. Flexoelectric rotation of polarization in ferroelectric thin films[J]. Nature Materials, 2011, 10 (12): 963-967. doi: 10.1038/nmat3141
    [8] MAJDOUB M S, SHARMA P, ÇAGIN T. Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures[J]. Physical Review B, 2008, 78 (12): 121407. doi: 10.1103/PhysRevB.78.121407
    [9] YAN X, HUANG W B, KWON S R, et al. A sensor for the direct measurement of curvature based on flexoelectricity[J]. Smart Materials and Structures, 2013, 22 (8): 085016. doi: 10.1088/0964-1726/22/8/085016
    [10] YAN D Z, WANG J X, XIANG J W, et al. A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator[J]. Science Advances, 2023, 9 (2): eadc8845. doi: 10.1126/sciadv.adc8845
    [11] WANG Z H, ZHANG X X, WANG X B, et al. Giant flexoelectric polarization in a micromachined ferroelectric diaphragm[J]. Advanced Functional Materials, 2013, 23 (1): 124-132. doi: 10.1002/adfm.201200839
    [12] BHASKAR U K, BANERJEE N, ABDOLLAHI A, et al. A flexoelectric microelectromechanical system on silicon[J]. Nature Nanotechnology, 2016, 11 (3): 263-266. doi: 10.1038/nnano.2015.260
    [13] ZHANG M Y, YAN D Z, WANG J X, et al. Ultrahigh flexoelectric effect of 3D interconnected porous polymers: modelling and verification[J]. Journal of the Mechanics and Physics of Solids, 2021, 151 : 104396. doi: 10.1016/j.jmps.2021.104396
    [14] QU Y L, JIN F, YANG J S. Effects of mechanical fields on mobile charges in a composite beam of flexoelectric dielectrics and semiconductors[J]. Journal of Applied Physics, 2020, 127 (19): 194502. doi: 10.1063/5.0005124
    [15] PETROV A G. Flexoelectricity of model and living membranes[J]. Biochimica et Biophysica Acta (BBA): Biomembranes, 2002, 1561 (1): 1-25. doi: 10.1016/S0304-4157(01)00007-7
    [16] LIU L P, SHARMA P. Flexoelectricity and thermal fluctuations of lipid bilayer membranes: renormalization of flexoelectric, dielectric, and elastic properties[J]. Physical Review E, 2013, 87 (3): 032715.
    [17] LOBKOVSKY A, GENTGES S, LI H, et al. Scaling properties of stretching ridges in a crumpled elastic sheet[J]. Science, 1995, 270 (5241): 1482-1485. doi: 10.1126/science.270.5241.1482
    [18] KODALI P, SARAVANAVEL G, SAMBANDAN S. Crumpling for energy: modeling generated power from the crumpling of polymer piezoelectric foils for wearable electronics[J]. Flexible and Printed Electronics, 2017, 2 (3): 035005. doi: 10.1088/2058-8585/aa7be5
    [19] WANG B L, YANG S Y, SHARMA P. Flexoelectricity as a universal mechanism for energy harvesting from crumpling of thin sheets[J]. Physical Review B, 2019, 100 (3): 035438. doi: 10.1103/PhysRevB.100.035438
    [20] LIU Y, CHEN L L, WANG B L, et al. Tuning crumpled sheets for an enhanced flexoelectric response[J]. Journal of Applied Mechanics, 2022, 89 (1): 011011. doi: 10.1115/1.4052575
    [21] SHARMA N D, LANDIS C M, SHARMA P. Piezoelectric thin-film superlattices without using piezoelectric materials[J]. Journal of Applied Physics, 2010, 108 (2): 024304. doi: 10.1063/1.3443404
    [22] LIU Y, ZHAO S Y, WANG B L. Stronger flexoelectricity from the laminated film subjected to crumpling deformation[J]. Journal of Applied Physics, 2021, 130 (2): 024101. doi: 10.1063/5.0054131
    [23] RAHMATI A H, YANG S Y, BAUER S, et al. Nonlinear bending deformation of soft electrets and prospects for engineering flexoelectricity and transverse (d31) piezoelectricity[J]. Soft Matter, 2018, 15 (1): 127-148.
    [24] DARBANIYAN F, DAYAL K, LIU L P, et al. Designing soft pyroelectric and electrocaloric materials using electrets[J]. Soft Matter, 2019, 15 (2): 262-277. doi: 10.1039/C8SM02003E
    [25] WEN X, LI D F, TAN K, et al. Flexoelectret: an electret with a tunable flexoelectriclike response[J]. Physical Review Letters, 2019, 122 (14): 148001. doi: 10.1103/PhysRevLett.122.148001
    [26] CERDA E, MAHADEVAN L. Confined developable elastic surfaces: cylinders, cones and the elastica[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461 (2055): 671-700. doi: 10.1098/rspa.2004.1371
    [27] CERDA E, CHAIEB S, MELO F, et al. Conical dislocations in crumpling[J]. Nature, 1999, 401 : 46-49. doi: 10.1038/43395
    [28] CERDA E, MAHADEVAN L. Conical surfaces and crescent singularities in crumpled sheets[J]. Physical Review Letters, 1998, 80 (11): 2358-2361. doi: 10.1103/PhysRevLett.80.2358
    [29] SHARMA N D, MARANGANTI R, SHARMA P. On the possibility of piezoelectric nanocomposites without using piezoelectric materials[J]. Journal of the Mechanics and Physics of Solids, 2007, 55 (11): 2328-2350. doi: 10.1016/j.jmps.2007.03.016
    [30] DENG Q, KAMMOUN M, ERTURK A, et al. Nanoscale flexoelectric energy harvesting[J]. International Journal of Solids and Structures, 2014, 51 (18): 3218-3225. doi: 10.1016/j.ijsolstr.2014.05.018
  • 加载中
图(7)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  50
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-02
  • 修回日期:  2024-08-19
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回