留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SABRE软件的大规模RBE3单元快速求解方法及程序开发

张长兴 王立凯 常亮 聂小华

张长兴, 王立凯, 常亮, 聂小华. 基于SABRE软件的大规模RBE3单元快速求解方法及程序开发[J]. 应用数学和力学, 2025, 46(4): 483-494. doi: 10.21656/1000-0887.450181
引用本文: 张长兴, 王立凯, 常亮, 聂小华. 基于SABRE软件的大规模RBE3单元快速求解方法及程序开发[J]. 应用数学和力学, 2025, 46(4): 483-494. doi: 10.21656/1000-0887.450181
ZHANG Changxing, WANG Likai, CHANG Liang, NIE Xiaohua. A Fast Solution Method and Program Development for Large-Scale RBE 3 Elements Based on the SABRE Software[J]. Applied Mathematics and Mechanics, 2025, 46(4): 483-494. doi: 10.21656/1000-0887.450181
Citation: ZHANG Changxing, WANG Likai, CHANG Liang, NIE Xiaohua. A Fast Solution Method and Program Development for Large-Scale RBE 3 Elements Based on the SABRE Software[J]. Applied Mathematics and Mechanics, 2025, 46(4): 483-494. doi: 10.21656/1000-0887.450181

基于SABRE软件的大规模RBE3单元快速求解方法及程序开发

doi: 10.21656/1000-0887.450181
基金项目: 

国家重点研发计划 2021YFB3302301

陕西省重点研发计划 2022ZDLGY02-08

详细信息
    通讯作者:

    张长兴(1993—),男,工程师,硕士(通讯作者. E-mail: zhangzx035@avic.com)

  • 中图分类号: V215.2

A Fast Solution Method and Program Development for Large-Scale RBE 3 Elements Based on the SABRE Software

  • 摘要: 随着复杂结构仿真建模的精细化程度越来越高,应用到零部件连接和载荷分配的RBE3单元数量急剧增加,由此引起了自主结构分析软件的数值求解困难. 该文首先建立了RBE3单元主、从节点之间的位移约束关系,剖析了线性消去理论引起求解困难的原因. 然后,采用增广Lagrange理论将位移约束关系引入到有限元问题的泛函中,并利用泛函的变分推导出了RBE3单元的刚度矩阵显式表达形式,从而将约束处理问题转化为单元求解问题. 最后,在上述理论基础上,结合自主结构分析软件SABRE进行了相关功能模块的设计与开发,并通过工程算例验证. 结果表明,该文改进后的SABRE软件在求解含大规模RBE3单元的分析模型时求解精度与NASTRAN基本一致,求解效率提升明显.
  • 图  1  单个主从节点间的位移关系示意图

    Figure  1.  Schematic diagram of the displacement relationship between a single master and slave node pair

    图  2  SABRE软件架构图

    Figure  2.  The SABRE software architecture diagram

    图  3  基于增广Lagrange理论的RBE3单元处理流程

    Figure  3.  The RBE3 element processing flow chart based on the augmented Lagrange theory

    图  4  数据卡片预处理流程

    Figure  4.  The data card preprocessing flow chart

    图  5  节点处理流程

    Figure  5.  The node preprocessing flow chart

    图  6  单元处理流程

    Figure  6.  The element preprocessing flow chart

    图  7  单元刚度矩阵生成流程

    Figure  7.  The element stiffness matrix generation flow chart

    图  8  总体刚度矩阵装配流程

    Figure  8.  The total stiffness matrix assembly flow chart

    图  9  分析模型示意图

    Figure  9.  The analysis model diagram

    图  10  SABRE软件位移结果云图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  10.  The displacement contour of the SABRE software

    图  11  NASTRAN软件位移结果云图

    Figure  11.  The displacement contour of the NASTRAN software

  • [1] MSC. Software Corporation. MSC NASTRAN 2012 linear static analysis user's guide[Z]. 2011: 327-336.
    [2] IMRAN M, SHABBIR AHMED R M, HANEEF M. FE analysis for landing gear of test air craft[J]. Materials Today: Proceedings, 2015, 2 (4/5): 2170-2178.
    [3] NETO A T, DE SILVA BUSSAMRA F L, DE CASTRO E SILVA H A. A new metamodel for reinforced panels under compressive loads and its application to the fuselage conception[J]. Latin American Journal of Solids and Structures, 2014, 11 (2): 223-244. doi: 10.1590/S1679-78252014000200005
    [4] 吕毅宁, 吕振华. 焊点连接模型对结构刚度的有限元模拟精度的影响分析[J]. 工程力学, 2009, 26 (10): 171-176.

    LÜ Yining, LÜ Zhenhua. Effects of spot weld connecting models on the prediction accuracy of structural stiffness by finite element analysis[J]. Engineering Mechanics, 2009, 26 (10): 171-176. (in Chinese)
    [5] 赵晓斌, 王伟飞, 彭亚康, 等. 舱内液体模拟方法对船体振动分析的影响对比[J]. 舰船科学技术, 2020, 42 (11): 25-29.

    ZHAO Xiaobin, WANG Weifei, PENG Yakang, et al. Investigation of internal liquid simulation methods for vibration analysis of ships[J]. Ship Science and Technology, 2020, 42 (11): 25-29. (in Chinese)
    [6] 张琪, 刘莉. 导弹固有特性的有限元分析[J]. 弹箭与制导学报, 2008, 28 (2): 6-7.

    ZHANG Qi, LIU Li. Finite element analysis of missile inherent properties[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28 (2): 6-7. (in Chinese)
    [7] 于翰林, 毛洪海, 杨延功. 某纯电动商用车车身骨架强度仿真分析[J]. 汽车实用技术, 2023, 48 (21): 77-80.

    YU Hanlin, MAO Honghai, YANG Yangong. Simulation analysis for body frame strength of a pure electric commercial vehicle[J]. Automobile Applied Technology, 2023, 48 (21): 77-80. (in Chinese)
    [8] 张凡, 贾明晓, 刘祖军, 等. 不同桥梁结构多尺度建模方法比选[J]. 建材技术与应用, 2021(1): 7-12.

    ZHANG Fan, JIA Mingxiao, LIU Zujun, et al. Comparison and selection of multi-scale modeling methods for different bridge structures[J]. Research & Application of Building Materials, 2021(1): 7-12. (in Chinese)
    [9] FIACCO A V, MCCORMICK G P. Nonlinear Programming: Sequential Unconstrained Minimization Techniques[M]. New York: Wiley, 1968.
    [10] 宋菲, 吴泽忠. 外罚函数法与广义Lagrange乘子法的比较研究[J]. 成都信息工程大学学报, 2017, 32 (6): 667-674.

    SONG Fei, WU Zezhong. A comparative study of external penalty function method and generalized Lagrangian multiplier method[J]. Journal of Chengdu University of Information Technology, 2017, 32 (6): 667-674. (in Chinese)
    [11] HESTENES M R. Multiplier and gradient methods[J]. Journal of Optimization Theory and Applications, 1969, 4 (5): 303-320.
    [12] POWELL M J D. A method for nonlinear constraints in minimization problems[M]//Optimization. New York: Academic Press, 1969: 283-298.
    [13] NOOR M A, NOOR K I. Sensitivity analysis of some quasi variational inequalities[J]. Journal of Advanced Mathematical Studies, 2013, 6 (1): 43-45.
    [14] BEREMLIJSKI P, HASLINGER J, KOCVARA M, et al. Shape optimization in contact problems with Coulomb friction[J]. SIAM Journal on Optimization, 2002, 13 (2): 561-587.
    [15] 王彬文, 段世慧, 聂小华, 等. 航空结构分析CAE软件发展现状与未来挑战[J]. 航空学报, 2022, 43 (6): 527272.

    WANG Binwen, DUAN Shihui, NIE Xiaohua, et al. Development situation and future challenges of CAE software used in aeronautical structural analysis[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (6): 527272. (in Chinese)
    [16] 王立凯, 艾森, 郭瑜超, 等. 基于增量-迭代算法的SABRE系统非线性分析流程设计[J]. 航空计算技术, 2022, 52 (5): 9-13.

    WANG Likai, AI Sen, GUO Yuchao, et al. Design of nonlinear analysis process for SABRE system based on incremental-iterative algorithm[J]. Aeronautical Computing Technique, 2022, 52 (5): 9-13. (in Chinese)
    [17] 陈飙松, 陆旭泽, 张盛. 基于SiPESC平台的弹塑性分析的软件框架[J]. 计算力学学报, 2016, 33 (4): 599-604.

    CHEN Biaosong, LU Xuze, ZHANG Sheng. Software framework for elasto-plastic analysis based on SiPESC platform[J]. Chinese Journal of Computational Mechanics, 2016, 33 (4): 599-604. (in Chinese)
    [18] PENG L, FENG Z, JOLI P, et al. LiToTac: an interactive-interface software for finite element analysis of multiple contact dynamics[J]. Computer Modeling in Engineering & Sciences, 2019, 118 (1): 111-137.
    [19] 彭梦瑶, 顾水涛, 周洋靖, 等. 基于LiToSim平台的疲劳寿命评估LtsFatigue软件开发及应用[J]. 应用数学和力学, 2022, 43 (9): 976-986.

    PENG Mengyao, GU Shuitao, ZHOU Yangjing, et al. Development and application of fatigue life evaluation software LtsFatigue based on LiToSim[J]. Applied Mathematics and Mechanics, 2022, 43 (9): 976-986. (in Chinese)
    [20] 孙侠生, 段世慧, 陈焕星. 坚持自主创新实现航空CAE软件的产业化发展[J]. 计算机辅助工程, 2010, 19 (1): 1-6.

    SUN Xiasheng, DUAN Shihui, CHEN Huanxing. Keeping independent innovation, implementing industrialization development of aviation CAE software[J]. Computer Aided Engineering, 2010, 19 (1): 1-6. (in Chinese)
  • 加载中
图(11)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  20
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-20
  • 修回日期:  2024-12-26
  • 刊出日期:  2025-04-01

目录

    /

    返回文章
    返回