留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁电弹性材料含纳米尺度唇口次生两不对称裂纹的反平面问题

姜丽娟 刘官厅 高媛媛 王程颜 郭怀民

姜丽娟, 刘官厅, 高媛媛, 王程颜, 郭怀民. 磁电弹性材料含纳米尺度唇口次生两不对称裂纹的反平面问题[J]. 应用数学和力学, 2024, 45(10): 1332-1344. doi: 10.21656/1000-0887.450180
引用本文: 姜丽娟, 刘官厅, 高媛媛, 王程颜, 郭怀民. 磁电弹性材料含纳米尺度唇口次生两不对称裂纹的反平面问题[J]. 应用数学和力学, 2024, 45(10): 1332-1344. doi: 10.21656/1000-0887.450180
JIANG Lijuan, LIU Guanting, GAO Yuanyuan, WANG Ghengyan, GUO Huaimin. An Antiplane Problem of Magnetoelectroelastic Materials With Nanoscale Lip-Shaped Orifice With 2 Asymmetric Cracks[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1332-1344. doi: 10.21656/1000-0887.450180
Citation: JIANG Lijuan, LIU Guanting, GAO Yuanyuan, WANG Ghengyan, GUO Huaimin. An Antiplane Problem of Magnetoelectroelastic Materials With Nanoscale Lip-Shaped Orifice With 2 Asymmetric Cracks[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1332-1344. doi: 10.21656/1000-0887.450180

磁电弹性材料含纳米尺度唇口次生两不对称裂纹的反平面问题

doi: 10.21656/1000-0887.450180
基金项目: 

国家自然科学基金 12162027

内蒙古自然科学基金重点项目 2024ZD21

内蒙古自治区高等学校科学技术研究自然科学重点项目 NJZZ22574

内蒙古自然科学基金 2023LHMS01017

内蒙古自治区高等学校科学技术研究自然科学一般项目 NJZY23089

详细信息
    作者简介:

    姜丽娟(1990—),女,讲师,博士生(E-mail: 1530284866@qq.com)

    通讯作者:

    刘官厅(1966—),男,博士(通讯作者. E-mail: guantingliu@imnu.edu.cn)

  • 中图分类号: O346.1

An Antiplane Problem of Magnetoelectroelastic Materials With Nanoscale Lip-Shaped Orifice With 2 Asymmetric Cracks

  • 摘要: 基于Gurtin-Murdoch表面弹性理论和磁电弹性(MEE)理论,利用解析函数的保角映射技术,研究了反平面机械载荷和面内电磁载荷作用下,MEE材料中含有纳米尺度唇口次生两不对称裂纹的断裂行为,给出了缺陷(裂纹和唇口孔)周围广义MEE应力场和裂纹尖端MEE场强度因子以及能量释放率的解析解. 在特殊条件下,所得结果退化为已有结果或者给出新的结果. 数值算例揭示了缺陷表面效应对裂纹尖端MEE场强度因子的影响与纳米圆孔半径、唇口孔的大小、唇口次生裂纹大小,以及外加的机-电-磁载荷有关,也揭示了考虑表面效应时,无量纲能量释放率随唇口宽度、无穷远处机械载荷、电载荷和磁载荷的变化而变化.
  • 图  1  MEE材料含纳米尺度唇口次生两不对称裂纹示意图

    Figure  1.  Schematic diagram of the magnetoelectroelastic material containing a nanoscale lip with asymmetric cracks

    图  2  KR的变化曲线

    Figure  2.  The curves of K with R

    图  3  Ka/h的变化曲线

    Figure  3.  The curves of K with a/h

    图  4  Kh/a的变化曲线

    Figure  4.  The curves of K with h/a

    图  5  KL1/a的变化曲线

    Figure  5.  The curves of K with L1/a

    图  6  KL2/L1的变化曲线

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  The curves of K with L2/L1

    图  7  Kσzy的变化曲线

    Figure  7.  The curves of K with σzy

    图  8  KDy的变化曲线

    Figure  8.  The curves of K with Dy

    图  9  KBy的变化曲线

    Figure  9.  The curves of K with By

    图  10  J/J0a的变化曲线

    Figure  10.  The curves of J/J0 with a

    图  11  J/Jcrσzy的变化曲线

    Figure  11.  The curves of J/Jcr with σzy

    图  12  J/JcrDy的变化曲线

    Figure  12.  The curves of J/Jcr with Dy

    图  13  J/JcrBy的变化曲线

    Figure  13.  The curves of J/Jcr with By

    表  1  基体材料的MEE常数

    Table  1.   Magnetoelectroelastic constants of the base material

    c44/Pa e15/(C·m-2) κ11/(C2·N-1·m-2) q15/(N·A-1·m-1) α11/(N·s·V-1·C-1) μ11/(N·s2·C-2)
    4.53×1010 11.6 8×10-9 550 5×10-12 5.9×10-4
    下载: 导出CSV

    表  2  纳米缺陷的表面常数

    Table  2.   Surface constants of nanodefects

    c44s/(N·m-1) e15s/(N·A-1) κ11s/(C2·N-1·m-2) q15s/(N·A-1) α11s/(N·A-1) μ11s/(N·s2·C-2)
    6 3.3×10-7 5×10-17 3×10-11 6×10-21 0
    下载: 导出CSV
  • [1] SUCHTELEN J V. Product properties: a new application of composite materials[J]. Philips Research Reports, 1972, 27(1): 28-37.
    [2] VALENTE J, OU J Y, PLUM E, et al. A magneto-electro-optical effect in a plasmonic nanowire material[J]. Nature Communications, 2015, 6: 7021. doi: 10.1038/ncomms8021
    [3] LIU L L, FENG W J. Dugdale plastic zone model of a penny-shaped crack in a magnetoelectroelastic cylinder under magnetoelectroelastic loads[J]. Archive of Applied Mechanics, 2019, 89(2): 291-305. doi: 10.1007/s00419-018-1467-6
    [4] HU K Q, ZHONG Z, CHEN Z T. Interface crack between magnetoelectroelastic and orthotropic half-spaces under anti-plane loading[J]. Theoretical and Applied Fracture Mechanics, 2019, 99: 95-103. doi: 10.1016/j.tafmec.2018.11.012
    [5] XIAO J H, XU Y L, ZHANG F C. Fracture analysis of magnetoelectroelastic solid weakened by periodic cracks and line inclusions[J]. Engineering Fracture Mechanics, 2019, 205: 70-80. doi: 10.1016/j.engfracmech.2018.11.019
    [6] AYATOLLAHI M, MONFARED M M, NOURAZAR M. Analysis of multiple moving mode-Ⅲ cracks in a functionally graded magnetoelectroelastic half-plane[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(19): 2823-2834. doi: 10.1177/1045389X17698593
    [7] MA P, SU R K L, FENG W J. Moving crack with a contact zone at interface of magnetoelectroelastic bimaterial[J]. Engineering Fracture Mechanics, 2017, 181: 143-160. doi: 10.1016/j.engfracmech.2017.07.012
    [8] ZHAO M H, ZHANG Q Y, LI X F, et al. An iterative approach for analysis of cracks with exact boundary conditions in finite magnetoelectroelastic solids[J]. Smart Materials and Structures, 2019, 28(5): 055025. doi: 10.1088/1361-665X/ab0eb0
    [9] XIAO J, XU Y, ZHANG F. Surface effects of electroelastic tip fields of multiple cracks emanating from a circular hole[J]. Engineering Fracture Mechanics, 2020, 236: 107219. doi: 10.1016/j.engfracmech.2020.107219
    [10] YANG Y, HU Z L, LI X F. Nanoscale mode-Ⅲ interface crack in a bimaterial with surface elasticity[J]. Mechanics of Materials, 2020, 140: 103246. doi: 10.1016/j.mechmat.2019.103246
    [11] GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces[J]. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291-323. doi: 10.1007/BF00261375
    [12] GURTIN M E, MURDOCH A I. Surface stress in solids[J]. International Journal of Solids and Structures, 1978, 14(6): 431-440. doi: 10.1016/0020-7683(78)90008-2
    [13] GURTIN M E, WEISSMVLLER J, LARCHÉ F. A general theory of curved deformable interfaces in solids at equilibrium[J]. Philosophical Magazine A, 1998, 78(5): 1093-1109. doi: 10.1080/01418619808239977
    [14] DINEVA P, STOYNOV Y, RANGELOV T. Dynamic fracture behavior of nanocracked graded magnetoelectroelastic solid[J]. Archive of Applied Mechanics, 2021, 91(4): 1495-1508. doi: 10.1007/s00419-020-01835-8
    [15] YANG D S, LIU G T. Anti-plane fracture problem of three nano-cracks emanating from a magnetoelectrically permeable regular triangle nano-hole in magnetoelectroelastic materials[J]. Modern Physics Letters B, 2021, 35(7): 2150127. doi: 10.1142/S021798492150127X
    [16] 杨东升, 刘官厅. 磁电弹性材料中含有带四条纳米裂纹的正4n边形纳米孔的反平面断裂问题[J]. 物理学报, 2020, 69(24): 181-190.

    YANG Dongsheng, LIU Guanting. Anti-plane fracture problem of four nano-cracks emanating from a regular 4n-polygon nano-hole in magnetoelectroelastic materials[J]. Acta Physica Sinica, 2020, 69(24): 181-190. (in Chinese)
    [17] XIAO J H, FENG G Y, SU M Y, et al. Fracture analysis on periodic radial cracks emanating from a nano-hole with surface effects in magnetoelectroelastic materials[J]. Engineering Fracture Mechanics, 2021, 258: 108115. doi: 10.1016/j.engfracmech.2021.108115
    [18] XIAO J H, XU B X, XU Y L, et al. Fracture analysis on a cracked elliptical hole with surface effect in magnetoelectroelastic solid[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102532. doi: 10.1016/j.tafmec.2020.102532
    [19] GUO J H, HE L T, LIU Y Z, et al. Anti-plane analysis of a reinforced nano-elliptical cavity or nano-crack in a magnetoelectroelastic matrix with surface effect[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102553. doi: 10.1016/j.tafmec.2020.102553
    [20] LIU Y Z, GUO J H, and ZHANG X Y. Surface effect on a nano-elliptical hole or nano-crack in magnetoelectroelastic materials under antiplane shear[J]. ZAMM Journal of Applied Mathematics and Mechanics, 2019, 99(7): e201900043. doi: 10.1002/zamm.201900043
    [21] XIAO J H, XU B X, XU Y L, et al. The generalized self-consistent micromechanics prediction of the magnetoelectroelastic properties of multi-coated nanocomposites with surface effect[J]. Smart Materials and Structures, 2019, 28(5): 055004. doi: 10.1088/1361-665X/ab0b6c
    [22] WU Z L, LIU G T, YANG D S. Anti-plane fracture behavior of n nano-cracks emanating from a magnetoelectrically semi-permeable regular n-polygon nano-hole in magnetoelectroelastic materials[J]. International Journal of Modern Physics B, 2024, 38(14): 2450170. doi: 10.1142/S0217979224501704
    [23] XIAO J H, XIN Y Y. Fracture analysis of circular hole edge arbitrary position crack with surface effects in magnetoelectroelastic materials[J]. Mathematics and Mechanics of Solids, 2023, 28(10): 2202-2214. doi: 10.1177/10812865231156464
    [24] 肖俊华, 信玉岩. 磁电弹性体中纳米孔边任意位置贯穿裂纹的解析解[J]. 固体力学学报, 2024, 45(1): 61-73.

    XIAO Junhua, XIN Yuyan. Analytical solution of an arbitrary-location through crack emanating from a nano-hole in magneto-electro-elastic materials[J]. Chinese Journal of Solid Mechanics, 2024, 45(1): 61-73. (in Chinese)
    [25] 范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003.

    FAN Tianyou. Foundation of Fracture Mechanics[M]. Beijing: Science Press, 2003. (in Chinese)
    [26] 匡震邦. 只有尖点的平面曲边多角形缺陷的应力分析[J]. 力学学报, 1979, 15(2): 118-128.

    KUANG Zhenbang. Stress analysis for plane curved polygonal defects containing cusps only[J]. Acta Mechanica Sinica, 1979, 15(2): 118-128. (in Chinese)
    [27] 刘鑫, 郭俊宏, 于静. 磁电弹性材料中唇形裂纹反平面问题[J]. 内蒙古大学学报(自然科学版), 2016, 47(1): 37-45.

    LIU Xin, GUO Junhong, YU Jing. Anti-plane problem of a lip-shaped crack in a magnetoelectro-elastic material[J]. Journal of Inner Mongolia University (Natural Science Edition), 2016, 47(1): 37-45. (in Chinese)
    [28] GUO H M, ZHAO G Z, JIANG L J. Screw dislocation interacting with lip-shaped crack in magnetoelectroelastic media[J]. Chinese Journal of Computational Physics, 2022, 39(1): 33-40.
    [29] 郭怀民, 赵国忠, 刘官厅, 等. 含唇口次生两不对称裂纹的一维六方压电准晶体的反平面剪切问题[J]. 固体力学学报, 2024, 45(1): 123-134.

    GUO Huaimin, ZHAO Guozhong, LIU Guanting, et al. The anti-plane shear problem of a lip-shaped orifice with two asymmetric edge rips in the one-dimensional hexagonal piezoelectric quasicrystal material[J]. Chinese Journal of Solid Mechanics, 2024, 45(1): 123-134. (in Chinese).
    [30] МУСХЕЛИШВИЛИ Н И. 数学弹性力学的几个基本问题[M]. 赵惠元, 译. 北京: 科学出版社, 1958.

    МУСХЕЛИШВИЛИ Н И. Some Basic Problems of Mathematical Theory of Elasticity[M]. ZHAO Huiyuan, transl. Beijing: Science Press, 1958. (in Chinese)
    [31] GUO J H, LU Z X. Anti-plane analysis of multiple cracks originating from a circular hole in a magnetoelectroelastic solid[J]. International Journal of Solids and Structures, 2010, 47(14/15): 1847-1856.
    [32] CHEN T. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects[J]. Acta Mechanica, 2008, 196(3): 205-217.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  58
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 修回日期:  2024-07-28
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回