留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于指定应力方法的混凝土开裂的三维数值模拟

张晓庆 王家林 易志坚 张拓 王敏

张晓庆, 王家林, 易志坚, 张拓, 王敏. 基于指定应力方法的混凝土开裂的三维数值模拟[J]. 应用数学和力学, 2024, 45(12): 1541-1554. doi: 10.21656/1000-0887.450161
引用本文: 张晓庆, 王家林, 易志坚, 张拓, 王敏. 基于指定应力方法的混凝土开裂的三维数值模拟[J]. 应用数学和力学, 2024, 45(12): 1541-1554. doi: 10.21656/1000-0887.450161
ZHANG Xiaoqing, WANG Jialin, YI Zhijian, ZHANG Tuo, WANG Min. 3D Numerical Simulation of Concrete Cracking Based on Specified Stress Method[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1541-1554. doi: 10.21656/1000-0887.450161
Citation: ZHANG Xiaoqing, WANG Jialin, YI Zhijian, ZHANG Tuo, WANG Min. 3D Numerical Simulation of Concrete Cracking Based on Specified Stress Method[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1541-1554. doi: 10.21656/1000-0887.450161

基于指定应力方法的混凝土开裂的三维数值模拟

doi: 10.21656/1000-0887.450161
(我刊编委易志坚来稿)
详细信息
    通讯作者:

    张晓庆(1987—),女,博士生(通讯作者. E-mail: kindzhxq@163.com)

  • 中图分类号: O34

3D Numerical Simulation of Concrete Cracking Based on Specified Stress Method

(Contributed by YI Zhijian, M.AMM Editorial Board)
  • 摘要: 基于指定应力方法,根据线弹性理论推导出了一种新的混凝土开裂的空间有限元列式,根据该有限元公式编制了相应的C++计算程序. 通过3个算例,将该文算法与理论结果以及ABAQUS中XFEM计算结果进行对比,验证了该文开裂算法的正确性. 与常规开裂算法相比,该文开裂算法开裂积分点的应力一旦指定为零(开裂状态),在后续计算中将不会出现非零,不需要迭代过程去调整为零,大大减少了迭代次数和每次迭代过程中需要处理的数据量;相较于ABAQUS中的XFEM算法只能使用一阶单元,本文开裂算法可以使用二阶单元进行开裂计算,在其他计算环境相同的情况下对开裂区域和开裂状态的判断更准确,这为商业有限元软件采用二阶单元进行更精细的开裂计算提供了一种新的途径和算法.
    1)  (我刊编委易志坚来稿)
  • 图  1  基于指定应力方法的混凝土开裂计算流程

    Figure  1.  The calculation flowchart for concrete cracking based on the specified stress method

    图  2  受轴向拉伸载荷的矩形悬臂梁(单位:mm)

    Figure  2.  The rectangular cantilever beam subject to axial tensile load (unit: mm)

    图  3  受均布荷载的悬臂T梁(单位:mm)

    Figure  3.  The cantilever T beam under uniform load (unit: mm)

    图  4  悬臂T梁STATUSXFEM云图

    Figure  4.  The STATUSXFEM nephogram of the cantilever T-beam

    图  5  悬臂T梁迭代20次裂纹扩展状态

    Figure  5.  The crack propagation state of the cantilever T-beam after 20 iterations

    图  6  悬臂T梁迭代30次裂纹扩展状态

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  The crack propagation state of the cantilever T-beam after 30 iterations

    图  7  预制裂纹简支梁示意图(单位:mm)

    Figure  7.  Schematic diagram of the precracked simply supported beams (unit: mm)

    图  8  预制裂纹简支梁STATUSXFEM云图(u=-0.000 4 m)

    Figure  8.  The STATUSXFEM nephogram of the precracked simply supported beam(u=-0.000 4 m)

    图  9  预制裂纹简支梁STATUSXFEM云图(u=-0.004 m)

    Figure  9.  The STATUSXFEM nephogram of the precracked simply supported beam(u=-0.004 m)

    图  10  预制裂纹简支梁裂纹扩展状态(u=-0.000 4 m)

    Figure  10.  The crack propagation state of the precracked simply supported beams(u=-0.000 4 m)

    图  11  预制裂纹简支梁裂纹扩展状态(u=-0.004 m)

    Figure  11.  The crack propagation state of the precracked simply supported beams(u=-0.004 m)

    表  1  有限元位移计算结果对比

    Table  1.   Comparison of calculation results of finite element displacements

    №. of node ABAQUS (1 element) ABAQUS (2 elements) ABAQUS (20 elements) the present (1 element)
    U2 U3 U2 U3 U2 U3 U2 U3
    1 -3.60E-5 -6.95E-20 -3.60E-5 -3.22E-18 -3.60E-5 -1.92E-17 -3.60E-5 -1.62E-18
    2 -7.45E-19 -2.43E-18 -3.05E-20 -1.61E-18 -2.03E-17 -1.99E-17 9.83E-19 8.27E-19
    3 -3.60E-5 2.70E-5 -3.60E-5 2.70E-5 -3.60E-5 2.70E-5 -3.60E-5 2.70E-5
    4 9.20E-19 2.70E-5 -1.12E-18 2.70E-5 -2.03E-17 2.70E-5 -9.23E-19 2.70E-5
    下载: 导出CSV

    表  2  积分点的强度及其开裂位移荷载

    Table  2.   The strengths of the integral points and the correponding cracking displacement loads

    №. strength ft/Pa cracking displacement load uc/m
    6 2.14E6 7.99E-5
    4 2.29E6 8.53E-5
    2 2.33E6 8.71E-5
    0 2.48E6 9.25E-5
    7 3.10E6 1.16E-4
    5 3.25E6 1.21E-4
    3 3.30E6 1.23E-4
    1 3.44E6 1.28E-4
    下载: 导出CSV

    表  3  4种荷载工况下的开裂积分点个数及裂纹扩展路径

    Table  3.   The numbers of crack integral points and crack propagation paths four load conditions

    displacement load u/m
    7.90E-5 8.00E-5 1.00E-4 1.30E-4
    number of crack integral points 0 1 4 8
    crack propagation path - 6 6→4→2→0 6→4→2→0→7→5→3→1
    下载: 导出CSV
  • [1] 赵超. 基于刚体弹簧法的钢筋混凝土结构破坏过程模拟方法[D]. 北京: 中国矿业大学(北京), 2018: 1.

    ZHAO Chao. Simulation method of failure process of reinforced concrete structure based on rigid body spring method[D]. Beijing: China University of Mining & Technology, Beijing, 2018: 1. (in Chinese)
    [2] NGO D, SCORDELIS A. Nonlinear analysis of reinforced concrete beams[J]. Journal of the American Concrete Insitute, 1967, 64(3): 152-163.
    [3] RASHID Y R. Ultimate strength analysis of prestressed concrete pressure vessels[J]. Nuclear Engineering and Design, 1968, 7(4): 334-344. doi: 10.1016/0029-5493(68)90066-6
    [4] HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7
    [5] BAŽANT Z P, OH B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16(3): 155-177. doi: 10.1007/BF02486267
    [6] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [7] MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
    [8] AGHAJANZADEH S M, MIRZABOZORG H. Concrete fracture process modeling by combination of extended finite element method and smeared crack approach[J]. Theoretical and Applied Fracture Mechanics, 2019, 101: 306-319. doi: 10.1016/j.tafmec.2019.03.012
    [9] SAGERESAN N, DRATHI R, ANJALI P S. Numerical analysis of concrete fracture[J]. International Journal of Damage Mechanics, 2010, 19(5): 559-573. doi: 10.1177/1056789509102121
    [10] GRAVES R H, DERUCHER K N. Interface smeared crack model analysis of concrete dams in earthquakes[J]. Journal of Engineering Mechanics, 1987, 113(11): 1678-1693. doi: 10.1061/(ASCE)0733-9399(1987)113:11(1678)
    [11] BAŽANT Z P, LIN F B. Nonlocal smeared cracking model for concrete fracture[J]. Journal of Structural Engineering, 1988, 114(11): 2493-2510. doi: 10.1061/(ASCE)0733-9445(1988)114:11(2493)
    [12] DAHLBLOM O, OTTOSEN N S. Smeared crack analysis using generalized fictitious crack model[J]. Journal of Engineering Mechanics, 1990, 116(1): 55-76. doi: 10.1061/(ASCE)0733-9399(1990)116:1(55)
    [13] ČERVENKA J, PAPANIKOLAOU V K. Three dimensional combined fracture-plastic material model for concrete[J]. International Journal of Plasticity, 2008, 24(12): 2192-2220. doi: 10.1016/j.ijplas.2008.01.004
    [14] BROUJERDIAN V, KAZEMI M T. Smeared rotating crack model for reinforced concrete membrane elements[J]. ACI Structural Journal, 2010, 107(4): 411-418.
    [15] HARIRI-ARDEBILI M A, SEYED-KOLBADI S M, MIRZABOZORG H. A smeared crack model for seismic failure analysis of concrete gravity dams considering fracture energy effects[J]. Structural Engineering and Mechanics, 2013, 48(1): 17-39. doi: 10.12989/sem.2013.48.1.017
    [16] HARIRI-ARDEBILI M A, SEYED-KOLBADI S M. Seismic cracking and instability of concrete dams: smeared crack approach[J]. Engineering Failure Analysis, 2015, 52: 45-60. doi: 10.1016/j.engfailanal.2015.02.020
    [17] EDALAT-BEHBAHANI A, BARROS J A O, VENTURA-GOUVEIA A. Three dimensional plastic-damage multidirectional fixed smeared crack approach for modelling concrete structures[J]. International Journal of Solids and Structures, 2017, 115: 104-125.
    [18] RIMKUS A, CERVENKA V, GRIBNIAK V, et al. Uncertainty of the smeared crack model applied to RC beams[J]. Engineering Fracture Mechanics, 2020, 233: 107088. doi: 10.1016/j.engfracmech.2020.107088
    [19] TEIXEIRA M, BERNARDO L. Evaluation of smeared constitutive laws for tensile concrete to predict the cracking of RC beams under torsion with smeared truss model[J]. Materials, 2021, 14(5): 1260. doi: 10.3390/ma14051260
    [20] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4): 59-67.

    NIE Jianguo, WANG Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4): 59-67. (in Chinese)
    [21] SIRICO A, MICHELINI E, BERNARDI P, et al. Simulation of the response of shrunk reinforced concrete elements subjected to short-term loading: a bi-dimensional numerical approach[J]. Engineering Fracture Mechanics, 2017, 174: 64-79. doi: 10.1016/j.engfracmech.2016.11.020
    [22] MOËS N, BELYTSCHKO T. Extended finite element method for cohesive crack growth[J]. Engineering Fracture Mechanics, 2002, 69(7): 813-833. doi: 10.1016/S0013-7944(01)00128-X
    [23] UNGER J F, ECKARDT S, KÖNKE C. Modelling of cohesive crack growth in concrete structures with the extended finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41/44): 4087-4100.
    [24] 方修君, 金峰, 王进廷. 用扩展有限元方法模拟混凝土的复合型开裂过程[J]. 工程力学, 2007, 24(S1): 46-52.

    FANG Xiujun, JIN Feng, WANG Jinting. Simulation of mixed-mode fracture of concrete using extended finite element method[J]. Engineering Mechanics, 2007, 24(S1): 46-52. (in Chinese)
    [25] IBRAHIMBEGOVIC A, BOULKERTOUS A, DAVENNE L, et al. Modelling of reinforced-concrete structures providing crack-spacing based on X-FEM, ED-FEM and novel operator split solution procedure[J]. International Journal for Numerical Methods in Engineering, 2010, 83(4): 452-481. doi: 10.1002/nme.2838
    [26] CONTRAFATTO L, CUOMO M, FAZIO F. An enriched finite element for crack opening and rebar slip in reinforced concrete members[J]. International Journal of Fracture, 2012, 178(1): 33-50.
    [27] 杨涛, 邹道勤. 基于XFEM的钢筋混凝土梁开裂数值模拟[J]. 浙江大学学报(工学版), 2013, 47(3): 495-501.

    YANG Tao, ZOU Daoqin. Numerical simulation of crack growth of reinforced concrete beam based on XFEM[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(3): 495-501. (in Chinese)
    [28] DU X L, JIN L, MA G W. Numerical modeling tensile failure behavior of concrete at mesoscale using extended finite element method[J]. International Journal of Damage Mechanics, 2014, 23(7): 872-898. doi: 10.1177/1056789513516028
    [29] JAVANMARDI M R, MAHERI M R. Extended finite element method and anisotropic damage plasticity for modelling crack propagation in concrete[J]. Finite Elements in Analysis and Design, 2019, 165: 1-20. doi: 10.1016/j.finel.2019.07.004
    [30] FARON A, ROMBACH G A. Simulation of crack growth in reinforced concrete beams using extended finite element method[J]. Engineering Failure Analysis, 2020, 116: 104698. doi: 10.1016/j.engfailanal.2020.104698
    [31] HAGHANI M, NEYA B N, AHMADI M T, et al. A new numerical approach in the seismic failure analysis of concrete gravity dams using extended finite element method[J]. Engineering Failure Analysis, 2022, 132: 105835. doi: 10.1016/j.engfailanal.2021.105835
    [32] 庄茁, 柳占立, 成斌斌, 等. 扩展有限单元法[M]. 北京: 清华大学出版社, 2012.

    ZHUANG Zhuo, LIU Zhanli, CHENG Binbin, et al. Extended Finite Element Method[M]. Beijing: Tsinghua University Press, 2012. (in Chinese)
    [33] SAGARESAN N. Modeling fracture of concrete with a simplified meshless discrete crack method[J]. KSCE Journal of Civil Engineering, 2012, 16(3): 417-425. doi: 10.1007/s12205-012-1480-1
    [34] MEGURO K, HAKUNO M. Fracture analyses of concrete structures by the modified distinct element method[J]. Structural Engineering/Earthquake Engineering, 1989, 6(2): 283-294.
    [35] PEARCE C J, THAVALINGAM A, LIAO Z, et al. Computational aspects of the discontinuous deformation analysis framework for modelling concrete fracture[J]. Engineering Fracture Mechanics, 2000, 65(2/3): 283-298.
    [36] YANG S K, CAO M S, REN X H, et al. 3D crack propagation by the numerical manifold method[J]. Computers & Structures, 2018, 194: 116-129.
    [37] 王家林, 张俊波, 何琳, 等. 一类指定应力问题的变分原理与应用[J]. 应用数学和力学, 2021, 42(4): 331-341. doi: 10.21656/1000-0887.410173

    WANG Jialin, ZHANG Junbo, HE Lin, et al. A variational principle and applications for a class of specified stress problems[J]. Applied Mathematics and Mechanics, 2021, 42(4): 331-341. (in Chinese) doi: 10.21656/1000-0887.410173
    [38] 江见鲸, 陆新征, 叶列平. 混凝土结构有限元分析[M]. 北京: 清华大学出版社, 2005: 217-218.

    JIANG Jianjing, LU Xinzheng, YE Lieping. Finite Element Analysis of Concrete Structures[M]. Beijing: Tsinghua University Press, 2005: 217-218. (in Chinese)
    [39] 周元德, 张楚汉, 金峰. 混凝土开裂的三维非线性数值模拟[J]. 清华大学学报(自然科学版), 2003, 43(11): 1542-1545.

    ZHOU Yuande, ZHANG Chuhan, JIN Feng. Three-dimensional nonlinear numerical model for concrete fracture analysis[J]. Journal of Tsinghua University (Science and Technology), 2003, 43(11): 1542-1545. (in Chinese)
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  44
  • HTML全文浏览量:  20
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-31
  • 修回日期:  2024-07-04
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回