留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于映射的模板光滑探测子的三阶WENO格式

王亚辉 郭城 杜玉龙

王亚辉, 郭城, 杜玉龙. 基于映射的模板光滑探测子的三阶WENO格式[J]. 应用数学和力学, 2025, 46(3): 394-411. doi: 10.21656/1000-0887.450150
引用本文: 王亚辉, 郭城, 杜玉龙. 基于映射的模板光滑探测子的三阶WENO格式[J]. 应用数学和力学, 2025, 46(3): 394-411. doi: 10.21656/1000-0887.450150
WANG Yahui, GUO Cheng, DU Yulong. A 3rd-Order WENO Scheme for Stencil Smoothness Indicators Based on Mapping[J]. Applied Mathematics and Mechanics, 2025, 46(3): 394-411. doi: 10.21656/1000-0887.450150
Citation: WANG Yahui, GUO Cheng, DU Yulong. A 3rd-Order WENO Scheme for Stencil Smoothness Indicators Based on Mapping[J]. Applied Mathematics and Mechanics, 2025, 46(3): 394-411. doi: 10.21656/1000-0887.450150

基于映射的模板光滑探测子的三阶WENO格式

doi: 10.21656/1000-0887.450150
基金项目: 

国家自然科学基金 12071470

河南省高等学校重点科研项目 22B110020

河南省自然科学基金 252300420394

详细信息
    作者简介:

    郭城(1980—),男,硕士(E-mail: gc_scv@163.com)

    杜玉龙(1988—),男,博士(E-mail: kunyu0918@163.com)

    通讯作者:

    王亚辉(1991—),男,博士(通讯作者. E-mail: hlg_cfd2014@163.com)

  • 中图分类号: O357.41

A 3rd-Order WENO Scheme for Stencil Smoothness Indicators Based on Mapping

  • 摘要: 加权本质无振荡(weighted essentially non-oscillatory, WENO)格式能否具有低耗散特性及高分辨率特性, 关键在于光滑探测子的构造.该文针对三阶WENO格式的光滑探测子进行修正, 通过最光滑的探测子, 构造出了一个关于子模板光滑探测子的映射函数.在该函数作用下, 减小了欠光滑模板的光滑探测子, 进而增大了欠光滑模板的非线性权重.这明显地降低了格式的数值耗散, 提高了格式的分辨率.一系列数值测试表明,基于映射的模板光滑探测子的三阶WENO格式比传统的三阶WENO-JS3和WENO-Z3格式具有更高的分辨率.
  • 图  1  三阶WENO数值通量模板

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Stencils for the 3rd-order WENO numerical flux

    图  2  冲击波相互作用的数值结果(t=0.038, N=400)

    Figure  2.  Numerical results of interacting blast waves for t=0.038, N=400

    图  3  冲击波相互作用的数值结果(t=0.038, N=800)

    Figure  3.  Numerical results of interacting blast waves for t=0.038, N=800

    图  4  线性对流方程(25)在初值(27)下,不同格式的数值解与解析解的比较(t=41, N=400)

    Figure  4.  Comparison of the analytical solution with the numerical solutions of linear advection eq. (25) with initial data (27) for t=41, N=400

    图  5  线性对流方程(25)在初值(28)下,不同格式的数值解与解析解的比较(t=400, N=400)

    Figure  5.  Comparison of the analytical solution with the numerical solutions of linear advection eq. (25) with initial data (28) for t=400, N=400

    图  6  线性对流方程(25)在初值(29)下,不同格式的数值解与解析解的比较(t=8, N=400)

    Figure  6.  Comparison of the analytical solution with the numerical solutions of linear advection eq. (25) with initial data (29) for t=8, N=400

    图  7  Sod激波管问题[24]的数值结果(t=2.0, N=200)

    Figure  7.  Numerical results of the Sod problem[24] for t=2.0, N=200

    图  8  Lax激波管问题[24]的数值结果(t=1.3, N=200)

    Figure  8.  Numerical results of the Lax problem[24] for t=1.3, N=200

    图  9  123激波管问题[24]的数值结果(t=1.0, N=200)

    Figure  9.  Numerical results of the 123 problem[24] for t=1.0, N=200

    图  10  冲击波的相互作用的数值结果(t=0.038, N=400)

    Figure  10.  Numerical results of interacting blast waves for t=0.038, N=400

    图  11  Sedov激波管问题[24]的数值结果(t=0.004, N=480)

    Figure  11.  Numerical results of the Sedov problem[24] for t=0.004, N=480

    图  12  激波等熵波相互作用(Shu-Osher)[24-25]的密度分布(t=1.8, N=401)

    Figure  12.  Density profiles of the shock entropy interacting of Shu-Osher[24-25] for t=1.8, N=401

    图  13  LeBlanc激波管问题的密度分布(t=6.0, N=3 201)

    Figure  13.  Density profiles of the LeBlanc shock tube problem for t=6.0, N=3 201

    图  14  二维Riemann问题的密度分布(t=0.8, N=801)

    Figure  14.  Density contours of 2D problems on 801×801 grid points for t=0.8, N=801

    图  15  Mach 3前台阶流问题的密度分布(t=4.0, Δxy=200)

    Figure  15.  Density contours for the Mach 3 wind tunnel flow with a forward step for t=4.0, Δxy=200

    表  1  线性对流方程(25)在初值(26a)下, 不同格式在t=2.0时的L1误差和收敛阶

    Table  1.   L1 errors and convergence rates with t=2.0 of different schemes for linear advection eq. (25) with initial data (26a)

    N WENO-JS3 WENO-Z3 WENO-JS3-M WENO-Z3-M
    L1 error (order) L1 error (order) L1 error (order) L1 error (order)
    25 7.60E-2(-) 5.31E-2(-) 6.88E-2(-) 3.93E-2(-)
    50 2.45E-2(1.63) 1.31E-2(2.02) 1.73E-2(1.99) 9.25E-3(2.09)
    100 5.82E-3(2.07) 2.90E-3(2.18) 3.26E-3(2.41) 1.97E-3(2.23)
    200 1.05E-3(2.47) 5.56E-4(2.38) 3.65E-4(3.16) 3.90E-4(2.34)
    400 2.24E-4(2.23) 7.82E-5(2.83) 4.67E-5(2.97) 6.32E-5(2.63)
    800 3.20E-5(2.81) 1.45E-5(2.43) 5.09E-6(3.20) 6.76E-6(3.22)
    下载: 导出CSV

    表  2  线性对流方程(25)在初值(26a)下, 不同格式在t=2.0时的L误差和收敛阶

    Table  2.   L errors and convergence rates with t=2.0 of different schemes for linear advection eq. (25) with initial data (26a)

    N WENO-JS3 WENO-Z3 WENO-JS3-M WENO-Z3-M
    L error (order) L error (order) L error (order) L error (order)
    25 1.62E-1(-) 1.17E-1(-) 1.39E-1(-) 9.77E-2(-)
    50 6.65E-2(1.28) 4.49E-2(1.38) 5.34E-2(1.38) 3.58E-2(1.45)
    100 2.45E-2(1.44) 1.59E-2(1.50) 1.66E-2(1.69) 1.22E-2(1.55)
    200 7.18E-3(1.77) 5.16E-3(1.62) 3.49E-3(2.25) 4.16E-3(1.55)
    400 2.54E-3(1.50) 1.31E-3(1.98) 4.71E-4(2.89) 1.22E-3(1.77)
    800 4.10E-4(2.63) 4.21E-4(1.64) 1.51E-4(1.64) 2.45E-4(2.32)
    下载: 导出CSV

    表  3  线性对流方程(25)在初值(26b)下, 不同格式在t=2.0时的L1误差和收敛阶

    Table  3.   L1 errors and convergence rates with t=2.0 of different schemes for linear advection eq. (25) with initial data (26b)

    N WENO-JS3 WENO-Z3 WENO-JS3-M WENO-Z3-M
    L1 error (order) L1 error (order) L1 error (order) L1 error (order)
    25 8.18E-2(-) 5.47E-2(-) 2.91E-2(-) 1.82E-2(-)
    50 2.88E-2(1.51) 1.50E-2(1.87) 8.37E-3(1.80) 4.65E-3(1.97)
    100 7.19E-3(2.00) 3.27E-3(2.20) 1.99E-3(2.07) 1.14E-3(2.03)
    200 1.63E-3(2.14) 5.32E-4(2.62) 2.47E-4(3.01) 2.16E-4(2.40)
    400 2.88E-4(2.50) 1.02E-4(2.38) 4.40E-5(2.49) 2.80E-5(2.95)
    800 3.08E-5(3.23) 9.35E-6(3.45) 5.47E-6(3.01) 3.87E-6(2.86)
    下载: 导出CSV

    表  4  线性对流方程(25)在初值(26b)下, 不同格式在t=2.0时的L误差和收敛阶

    Table  4.   L errors and convergence rates with t=2.0 of different schemes for linear advection eq. (25) with initial data (26b)

    N WENO-JS3 WENO-Z3 WENO-JS3-M WENO-Z3-M
    L error (order) L error (order) L error (order) L error (order)
    25 1.88E-1(-) 1.31E-1(-) 1.70E-1(-) 1.09E-1(-)
    50 7.83E-2(1.26) 5.15E-2(1.35) 6.19E-2(1.46) 4.08E-2(1.42)
    100 3.09E-2(1.34) 1.81E-2(1.51) 2.06E-2(1.59) 1.47E-2(1.47)
    200 1.12E-2(1.46) 5.11E-3(1.82) 4.64E-3(2.15) 4.81E-3(1.61)
    400 3.27E-3(1.78) 1.69E-3(1.60) 1.46E-3(1.67) 1.16E-3(2.05)
    800 5.87E-4(2.48) 2.79E-4(2.60) 2.08E-4(2.81) 1.51E-4(2.94)
    下载: 导出CSV

    表  5  不同WENO格式关于若干一维Riemann问题的时间成本

    Table  5.   The time costs of a number of 1D Riemann problems with different WENO schemes

    problem WENO-JS3 WENO-Z3 WENO-R3 WENO-JS3-M WENO-Z3-M
    Sod 0.146 5(1.00) 0.146 9(1.00) 0.175 5(1.20) 0.223 0(1.52) 0.224 9(1.53)
    Lax 0.195 3(1.00) 0.193 0(0.99) 0.230 9(1.18) 0.303 9(1.55) 0.305 1(1.56)
    Shu-Osher 0.261 1(1.00) 0.266 6(1.02) 0.316 0(1.21) 0.413 1(1.58) 0.414 7(1.59)
    blast 0.577 6(1.00) 0.599 3(1.04) 0.706 5(1.22) 0.900 3(1.56) 0.912 9(1.58)
    LeBlanc 9.414 0(1.00) 9.648 9(1.02) 11.559 4(1.23) 14.681 1(1.56) 14.889 6(1.58)
    下载: 导出CSV
  • [1] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187
    [2] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J]. Journal of Computational Physics, 1987, 71(2): 231-303. doi: 10.1016/0021-9991(87)90031-3
    [3] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
    [4] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, Ⅱ[J]. Journal of Computational Physics, 1989, 83(1): 32-78. doi: 10.1016/0021-9991(89)90222-2
    [5] HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207(2): 542-567. doi: 10.1016/j.jcp.2005.01.023
    [6] BORGES R, CARMONA M, COSTA B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211. doi: 10.1016/j.jcp.2007.11.038
    [7] HA Y, KIM C H, LEE Y J, et al. An improved weighted essentially non-oscillatory scheme with a new smoothness indicator[J]. Journal of Computational Physics, 2013, 232(1): 68-86. doi: 10.1016/j.jcp.2012.06.016
    [8] FAN P, SHEN Y Q, TIAN B L, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme[J]. Journal of Computational Physics, 2014, 269: 329-354.
    [9] YAN Z G, LIU H Y, MAO M L, et al. New nonlinear weights for improving accuracy and resolution of weighted compact nonlinear scheme[J]. Computers & Fluids, 2016, 127: 226-240.
    [10] KIM C H, HA Y S, YOON J H. Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes[J]. Journal of Scientific Computing, 2016, 67(1): 299-323. doi: 10.1007/s10915-015-0079-3
    [11] CASTRO M, COSTA B, DON W S. High order weighted essentiallynon-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792. doi: 10.1016/j.jcp.2010.11.028
    [12] ARÀNDIGA F, BAEZA A, BELDA A M, et al. Analysis of WENO schemes for full and global accuracy[J]. SIAM Journal on Numerical Analysis, 2011, 49(2): 893-915. doi: 10.1137/100791579
    [13] 王亚辉. 求解双曲守恒律方程的三阶修正模板WENO格式[J]. 应用数学和力学, 2022, 43(2): 224-236. doi: 10.21656/1000-0887.420091

    WANG Yahui. A 3rd-order modified stencil WENO scheme for solution of hyperbolic conservation law equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 224-236. (in Chinese) doi: 10.21656/1000-0887.420091
    [14] WANG Y H, DU Y L, ZHAO K L, et al. Modified stencil approximations for fifth-order weighted essentially non-oscillatory schemes[J]. Journal of Scientific Computing, 2019, 81(2): 898-922. doi: 10.1007/s10915-019-01042-w
    [15] WANG Y H, DU Y L, ZHAO K L, et al. A new 6th-order WENO scheme with modified stencils[J]. Computers & Fluids, 2020, 208: 104625.
    [16] WANG Y H. Improved weighted essentially non-oscillatory schemes with modified stencil approximation[J]. Computational and Applied Mathematics, 2023, 42(2): 82. doi: 10.1007/s40314-022-02075-y
    [17] ZENG F J, SHEN Y Q, LIU S P. A perturbational weighted essentially non-oscillatory scheme[J]. Computers & Fluids, 2018, 172: 196-208.
    [18] WU X, ZHAO Y. A high-resolution hybrid scheme for hyperbolic conservation laws[J]. International Journal for Numerical Methods in Fluids, 2015, 78(3): 162-187. doi: 10.1002/fld.4014
    [19] WU X, LIANG J, ZHAO Y. A new smoothness indicator for third-order WENO scheme[J]. International Journal for Numerical Methods in Fluids, 2016, 81(7): 451-459. doi: 10.1002/fld.4194
    [20] XU W, WU W. An improved third-order WENO-Z scheme[J]. Journal of Scientific Computing, 2018, 75(3): 1808-1841. doi: 10.1007/s10915-017-0587-4
    [21] WANG Y H, DU Y L, ZHAO K L, et al. A low-dissipation third-order weighted essentially nonoscillatory scheme with a new reference smoothness indicator[J]. International Journal for Numerical Methods in Fluids, 2020, 92(9): 1212-1234. doi: 10.1002/fld.4824
    [22] 王亚辉. 基于新的参考光滑性指示子的改进的三阶WENO格式[J]. 应用数学和力学, 2022, 43(7): 802-815. doi: 10.21656/1000-0887.420194

    WANG Yahui. An improved 3rd-order WENO scheme based on a new reference smoothness indicator[J]. Applied Mathematics and Mechanics, 2022, 43(7): 802-815. (in Chinese) doi: 10.21656/1000-0887.420194
    [23] 徐维铮, 吴卫国. 三阶WENO-Z格式精度分析及其改进格式[J]. 应用数学和力学, 2018, 39(8): 946-960. doi: 10.21656/1000-0887.390011

    XU Weizheng, WU Weiguo. Precision analysis of the 3rd-order WENO-Z scheme and its improved scheme[J]. Applied Mathematics and Mechanics, 2018, 39(8): 946-960. (in Chinese) doi: 10.21656/1000-0887.390011
    [24] LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 1954, 7(1): 159-193. doi: 10.1002/cpa.3160070112
    [25] SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1): 1-31. doi: 10.1016/0021-9991(78)90023-2
    [26] WANG Y H, GUO C. Improved third-order WENO scheme with a new reference smoothness indicator[J]. Applied Numerical Mathematics, 2023, 192: 454-472. doi: 10.1016/j.apnum.2023.07.006
    [27] WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1): 115-173. doi: 10.1016/0021-9991(84)90142-6
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  33
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-21
  • 修回日期:  2024-07-06
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回