留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

裂纹-夹杂问题分析的本征计算模型及其数值模拟

郭钊 任晓丹 和东宏

郭钊, 任晓丹, 和东宏. 裂纹-夹杂问题分析的本征计算模型及其数值模拟[J]. 应用数学和力学, 2025, 46(3): 371-381. doi: 10.21656/1000-0887.450134
引用本文: 郭钊, 任晓丹, 和东宏. 裂纹-夹杂问题分析的本征计算模型及其数值模拟[J]. 应用数学和力学, 2025, 46(3): 371-381. doi: 10.21656/1000-0887.450134
GUO Zhao, REN Xiaodan, HE Donghong. Numerical Modeling for the Analysis of Crack-Inclusion Problems by the Eigen Iterative Computational Model[J]. Applied Mathematics and Mechanics, 2025, 46(3): 371-381. doi: 10.21656/1000-0887.450134
Citation: GUO Zhao, REN Xiaodan, HE Donghong. Numerical Modeling for the Analysis of Crack-Inclusion Problems by the Eigen Iterative Computational Model[J]. Applied Mathematics and Mechanics, 2025, 46(3): 371-381. doi: 10.21656/1000-0887.450134

裂纹-夹杂问题分析的本征计算模型及其数值模拟

doi: 10.21656/1000-0887.450134
基金项目: 

国家自然科学基金 12162015

国家自然科学基金 12362018

江西省自然科学基金(面上项目) 20202BABL201015

详细信息
    通讯作者:

    郭钊(1986—),男,教授,博士,硕士生导师,江西省赣鄱俊才高校青年领军人才(江西省青年井冈学者)(通讯作者. E-mail: guozhao@shu.edu.cn)

  • 中图分类号: O341

Numerical Modeling for the Analysis of Crack-Inclusion Problems by the Eigen Iterative Computational Model

  • 摘要: 针对固体材料含有“裂纹-夹杂”的数值模拟问题,将Eshelby本征应变和等效夹杂替换理论引入边界积分方程中,建立了本征裂纹张开位移(crack opening displacement, COD)和本征应变边界积分方程的计算模型及数值实现,以解决“裂纹-夹杂”的相互作用机制. 在一定条件下,异性夹杂可以作为一般的夹杂问题处理,物理上可令夹杂的弹性模量为零,则该夹杂就“退化”为孔洞;同时,在几何上可令其最小尺寸方向上的尺寸为零,即可进一步“退化”为裂纹,因而裂纹可被认为是弹性模量为零的一种特殊夹杂. 采用边界积分方程的离散形式对裂纹和夹杂问题进行了数值验证,其中裂纹和夹杂的边界分别采用Gauss配点法和边界点法进行离散,进行了应力分析,研究了裂纹与夹杂的相互作用. 数值算例验证了本征计算模型处理“裂纹-夹杂”问题的正确性和方法的可行性,也表现出较高的计算精度,为该计算模型的大规模数值分析奠定了理论基础.
  • 图  1  本征COD与本征应变的关系

    Figure  1.  The relationship between the eigen COD and the eigen strain

    图  2  本征计算模型基本流程图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The flowchart of the eigen iterative computation model

    图  3  一条水平裂纹和一椭圆夹杂问题

    Figure  3.  One horizontal crack and one elliptical inclusion

    图  4  一条水平裂纹和一椭圆夹杂问题的Ⅰ型裂纹应力强度因子比较

    Figure  4.  Comparisons of normalized K SIFs for one horizontal crack and one elliptical inclusion

    图  5  一条水平裂纹和一椭圆夹杂问题的Ⅱ型裂纹应力强度因子比较

    Figure  5.  Comparisons of normalized K SIFs for one horizontal crack and one elliptical inclusion

    图  6  一条水平裂纹和多椭圆夹杂问题

    Figure  6.  One horizontal crack surrounded by a square array of 8 elliptical inclusions

    图  7  一条水平裂纹和多椭圆夹杂问题的Ⅰ型裂纹应力强度因子比较

    Figure  7.  Comparisons of normalized K SIFs for one horizontal crack surrounded by a square array of 8 elliptical inclusions

  • [1] DOLADO J S, VAN BREUGEL K. Recent advances in modeling for cementitious materials[J]. Cement and Concrete Research, 2011, 41(7): 711-726. doi: 10.1016/j.cemconres.2011.03.014
    [2] WU J Y, XU S L. An augmented multicrack elastoplastic damage model for tensile cracking[J]. International Journal of Solids and Structures, 2011, 48(18): 2511-2528. doi: 10.1016/j.ijsolstr.2011.05.001
    [3] XIAO H T, YUE Z Q. A three-dimensional displacement discontinuity method for crack problems in layered rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 412-420. doi: 10.1016/j.ijrmms.2011.02.005
    [4] ZHOU X P, LI X H. Constitutive relationship of brittle rock subjected to dynamic uniaxial tensile loads with microcrack interaction effects[J]. Theoretical and Applied Fracture Mechanics, 2009, 52(3): 140-145. doi: 10.1016/j.tafmec.2009.09.002
    [5] CHMELÍK F, TRNÍK A, IGOR Š, et al. Creation of microcracks in porcelain during firing[J]. Journal of the European Ceramic Society, 2011, 31(13): 2205-2209. doi: 10.1016/j.jeurceramsoc.2011.05.045
    [6] PINEAU A, TANGUY B. Advances in cleavage fracture modelling in steels: micromechanical, numerical and multiscale aspects[J]. Comptes Rendus Physique, 2010, 11(3/4): 316-325.
    [7] SOBELMAN O S, GIBELING J C, STOVER S M, et al. Do microcracks decrease or increase fatigue resistance in cortical bone?[J]. Journal of Biomechanics, 2004, 37(9): 1295-1303. doi: 10.1016/j.jbiomech.2003.12.034
    [8] SHI D L, FENG X Q, JIANG H, et al. Multiscale analysis of fracture of carbon nanotubes embedded in composites[J]. International Journal of Fracture, 2005, 134(3): 369-386.
    [9] 张国瑞. 有限元法[M]. 北京: 机械工业出版社, 1991.

    ZHANG Guorui. Finite Element Method[M]. Beijing: China Machine Press, 1991. (in Chinese)
    [10] 杨庆生, 杨卫. 断裂过程的有限元模拟[J]. 计算力学学报, 1997, 14(4): 407-412.

    YANG Qingsheng, YANG wei. Finite element simulation of fracture process[J]. Chinese Journal of Computational Mechanics, 1997, 14(4): 407-412. (in Chinese)
    [11] ALIABADI M H. Boundary element formulations in fracture mechanics[J]. Applied Mechanics Reviews, 1997, 50(2): 83-96. doi: 10.1115/1.3101690
    [12] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion, and related problems[J]. Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences, 1957, 241(1226): 376-396. doi: 10.1098/rspa.1957.0133
    [13] ESHELBY J D. The elastic field outside an ellipsoidal inclusion[J]. Proceedings of the Royal Society of London (Series A): Mathematical and Physical Sciences, 1959, 252(1271): 561-569. doi: 10.1098/rspa.1959.0173
    [14] DONG C Y, CHEUNG Y K, LO S H. A regularized domain integral formulation for inclusion problems of various shapes by equivalent inclusion method[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(31): 3411-3421.
    [15] DONG C Y, LEE K. Boundary element analysis of infinite anisotropic elastic medium containing inclusions and cracks[J]. Engineering Analysis With Boundary Elements, 2005, 29(6): 562-569. doi: 10.1016/j.enganabound.2004.12.011
    [16] DONG C Y. Effective elastic properties of doubly periodic array of inclusions of various shapes by the boundary element method[J]. International Journal of Solids and Structures, 2006, 43(25/26): 7919-7938.
    [17] LIU Y J, NISHIMURA N, OTANI Y, et al. A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model[J]. Journal of Applied Mechanics, 2005, 72(1): 115-128. doi: 10.1115/1.1825436
    [18] 马杭, 夏利伟, 秦庆华. 短纤维复合材料的本征应变边界积分方程计算模型[J]. 应用数学和力学, 2008, 29(6): 687-695. doi: 10.3879/j.issn.1000-0887.2008.06.007

    MA Hang, XIA Liwei, QIN Qinghua. Computational model for short-fiber composites with eigen-strain formulation of boundary integral equations[J]. Applied Mathematics and Mechanics, 2008, 29(6): 687-695. (in Chinese) doi: 10.3879/j.issn.1000-0887.2008.06.007
    [19] MA H, YAN C, QIN Q. Eigenstrain formulation of boundary integral equations for modeling particle-reinforced composites[J]. Engineering Analysis With Boundary Elements, 2008, 33: 410-419.
    [20] MA H, FANG J B, QIN Q H. Simulation of ellipsoidal particle-reinforced materials with eigenstrain formulation of 3D BIE[J]. Advances in Engineering Software, 2011, 42(10): 750-759. doi: 10.1016/j.advengsoft.2011.05.013
    [21] 马杭, 郭钊, 秦庆华. 二维多项式本征应变边界积分方程及其数值验证[J]. 应用数学和力学, 2011, 32(5): 522-532. doi: 10.3879/j.issn.1000-0887.2011.05.002

    MA Hang, GUO Zhao, QIN Qinghua. Two-dimensional polynomial eigenstrain formulation of boundary integral equation with numerical verification[J]. Applied Mathematics and Mechanics, 2011, 32(5): 522-532. (in Chinese) doi: 10.3879/j.issn.1000-0887.2011.05.002
    [22] GUO Z, MA H. Solution of stress intensity factors of multiple cracks in plane elasticity with eigen COD formulation of boundary integral equation[J]. Journal of Shanghai University (English Edition), 2011, 15(3): 173-179. doi: 10.1007/s11741-011-0716-1
    [23] 郭钊, 郭子涛, 易玲艳. 多裂纹问题计算分析的本征COD边界积分方程方法[J]. 应用数学和力学, 2019, 40(2): 200-209. doi: 10.21656/1000-0887.390183

    GUO Zhao, GUO Zitao, YI Lingyan. Analysis of multicrack problems with eigen COD boundary integral equations[J]. Applied Mathematics and Mechanics, 2019, 40(2): 200-209. (in Chinese) doi: 10.21656/1000-0887.390183
    [24] 中国航空研究院. 应力强度因子手册[M]. 北京: 科学出版社, 1981.

    Chinese Aeronautical Establishment. Handbook of Stress Intensity Factor[M]. Beijing: Science Press, 1981. (in Chinese)
    [25] ERDOGAN F, GUPTA G D, RATWANI M. Interaction between a circular inclusion and an arbitrarily oriented crack[J]. Journal of Applied Mechanics, 1974, 41(4): 1007-1013. doi: 10.1115/1.3423424
    [26] TANG R, WANG Y. On the problem of crack system with an elliptic hole[J]. Acta Mechanica Sinica, 1986, 2(1): 47-57. doi: 10.1007/BF02487881
    [27] HAN X L, WANG Z Q, Elastic fields of interacting elliptic inhomogeneities[J]. International Journal of Solids and Structures, 1999, 36: 4523-4541 doi: 10.1016/S0020-7683(98)00226-1
    [28] MA H, QIN Q H. Solving potential problems by a boundary-type meshless method: the boundary point method based on BIE[J]. Engineering Analysis with Boundary Elements, 2007, 31(9): 749-761. doi: 10.1016/j.enganabound.2007.03.001
    [29] 马杭, 周鹃. 基于二次移动单元的边界点法解弹性力学问题[J]. 上海大学学报(自然科学版), 2009, 15(6): 581-585.

    MA Hang, ZHOU Juan. Boundary point method based on quadratic moving elements for elasticity[J]. Journal of Shanghai University (Natural Science Edition), 2009, 15(6): 581-585. (in Chinese)
  • 加载中
图(7)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  29
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-11
  • 修回日期:  2024-07-02
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回