留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负Poisson比热电器件的热-电-力耦合弯曲特征及强度分析

崔有江 刘超 陈家鹏 王彪 王保林

崔有江, 刘超, 陈家鹏, 王彪, 王保林. 负Poisson比热电器件的热-电-力耦合弯曲特征及强度分析[J]. 应用数学和力学, 2024, 45(10): 1243-1255. doi: 10.21656/1000-0887.450113
引用本文: 崔有江, 刘超, 陈家鹏, 王彪, 王保林. 负Poisson比热电器件的热-电-力耦合弯曲特征及强度分析[J]. 应用数学和力学, 2024, 45(10): 1243-1255. doi: 10.21656/1000-0887.450113
CUI Youjiang, LIU Chao, CHEN Jiapeng, WANG Biao, WANG Baolin. Thermo-Electric-Mechanical Coupling Bending Property and Strength Analyses of Thermoelectric Devices With the Negative Poisson's Ratio Architecture[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1243-1255. doi: 10.21656/1000-0887.450113
Citation: CUI Youjiang, LIU Chao, CHEN Jiapeng, WANG Biao, WANG Baolin. Thermo-Electric-Mechanical Coupling Bending Property and Strength Analyses of Thermoelectric Devices With the Negative Poisson's Ratio Architecture[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1243-1255. doi: 10.21656/1000-0887.450113

负Poisson比热电器件的热-电-力耦合弯曲特征及强度分析

doi: 10.21656/1000-0887.450113
基金项目: 

国家自然科学基金 12102104

广东省基础与应用基础研究基金 2022A1515240072

广东省基础与应用基础研究基金 2022B1515020099

广东省基础与应用基础研究基金 2022A1515010801

广东省基础与应用基础研究基金 2023A1515240053

详细信息
    作者简介:

    崔有江(1990—),男,副研究员,博士(E-mail: cuiyoujiang@dgut.edu.cn)

    通讯作者:

    王彪(1968—),男,教授,博士,博士生导师(通讯作者. E-mail: wangbiao@mail.sysu.edu.cn)

    王保林(1968—),男,教授,博士,博士生导师(通讯作者. E-mail: wangbl@hit.edu.cn)

  • 中图分类号: O341

Thermo-Electric-Mechanical Coupling Bending Property and Strength Analyses of Thermoelectric Devices With the Negative Poisson's Ratio Architecture

  • 摘要: 随着智能可穿戴设备的快速发展,对供电元件的续航时间、便捷性以及轻量化等提出了更高要求. 热电器件可以直接将人体新陈代谢释放的热能转换为电能,为可穿戴设备持续供电. 利用整体-局部、细观-宏观相结合的分析方法,该文研究了负Poisson比热电器件的热-电-力耦合弯曲行为及其强度失效问题. 首先,通过建立负Poisson比热电器件的均质化分析模型,获取了器件的宏观弯曲特征,并给出了应力最大的截面. 然后,建立热电蜂窝的受力分析模型,利用热力学强度理论导出了胞壁的细观强度失效临界荷载. 研究发现:热电蜂窝的应力水平随着内凹角增大呈现先减小后增加的趋势;对于负Poisson比热电蜂窝,强度失效首先发生在中间部位;对于传统的六边形热电蜂窝,端部比中间部位先发生强度破坏;热电器件发生断裂破坏时,中间和端部的临界裂纹长度近似相等,可以拟合为内凹角的指数函数.
  • 图  1  热电器件工作原理及负Poisson比热电器件分析模型

    Figure  1.  Schematic diagram of the working mechanism for the thermoelectric device and the analysis model for the negative Poisson's ratio thermoelectric device

    图  2  求解位移场流程图

    Figure  2.  The flowchart of solving the displacement field

    图  3  利用叠加原理建立热电蜂窝受力分析模型

    Figure  3.  The force analysis model for the thermoelectric honeycomb established based on the superposition principle

    图  4  斜胞壁在拉伸和剪切荷载作用下产生中心贯穿裂纹受力示意图

    Figure  4.  The stress analysis diagram of a center-through-cracked cell wall under tensile and shear combined stresses

    图  5  理论模型与有限元模拟对比

    Figure  5.  Comparison of the theoretical model and the finite element simulation

    图  6  内凹角对热电器件力学性能的影响

    Figure  6.  Effects of the re-entrant angle on mechanical performances of the thermoelectric generator

    图  7  内凹角对热电器件失效强度的影响

    Figure  7.  Effects of the re-entrant angle on the failure strength of the thermoelectric generator

    表  1  可穿戴热电器件材料属性和几何尺寸

    Table  1.   Material properties and geometric dimensions of the wearable thermoelectric device

    parameter value
    Bi2Te3 K20=1.1 W/(m·K)
    E20=63.3 GPa
    ρ20=9.4×10-6 Ω·m
    υ20=0.23
    λ=194 μV/K
    α=8.98×10-6 K
    PDMS E1=E3=10 MPa υ1=υ3=0.495
    dimension L=43 mm B=39 mm H1=H3=0.5 mm
    H2=2 mm h/l=2 t=0.5 mm
    下载: 导出CSV

    表  2  轴向应力最大值随弹簧刚度系数变化规律

    Table  2.   Material properties and geometric dimensions of the wearable thermoelectric device

    parameter value
    k/(N/m2) 1×106 1×109 1×1012 1×1015
    |σ|max/MPa 61.6 61.9 62.1 62.1
    下载: 导出CSV
  • [1] JIANG F, ZHOU X, LV J, et al. Stretchable, breathable, and stable lead-free perovskite/polymer nanofiber composite for hybrid triboelectric and piezoelectric energy harvesting[J]. Advanced Materials, 2022, 34(17): 2200042. doi: 10.1002/adma.202200042
    [2] 崔有江, 王保林, 王开发. 多孔泡沫热电器件断裂及其对能量转化性能的影响规律研究[J]. 应用数学和力学, 2023, 44(11): 1291-1298. doi: 10.21656/1000-0887.440147

    CUI Youjiang, WANG Baolin, WANG Kaifa. Evaluation of fracture and its effects on energy conversion performance of porous foam thermoelectric generators[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1291-1298. (in Chinese) doi: 10.21656/1000-0887.440147
    [3] SHI X L, SUN S, WU T, et al. Weavable thermoelectrics: advances, controversies, and future developments[J]. Materials Futures, 2024, 3(1): 012103. doi: 10.1088/2752-5724/ad0ca9
    [4] YANG Y, DENG H, FU Q. Recent progress on PEDOT: PSS based polymer blends and composites for flexible electronics and thermoelectric devices[J]. Materials Chemistry Frontiers, 2020, 4(11): 3130-3152. doi: 10.1039/D0QM00308E
    [5] SUN T T, ZHOU B Y, ZHENG Q, et al. Stretchable fabric generates electric power from woven thermoelectric fibers[J]. Nature Communications, 2020, 11(1): 572. doi: 10.1038/s41467-020-14399-6
    [6] NAN K W, KANG S D, LI K, et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices[J]. Science Advances, 2018, 4(11): eaau5849. doi: 10.1126/sciadv.aau5849
    [7] KONG D Y, ZHU W, GUO Z P, et al. High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting[J]. Energy, 2019, 175: 292-299. doi: 10.1016/j.energy.2019.03.060
    [8] ZHAO X, ZHAO C S, JIANG Y F, et al. Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices[J]. Journal of Power Sources, 2020, 479: 229044. doi: 10.1016/j.jpowsour.2020.229044
    [9] KARTHIKEYAN V, SURJADI J U, WONG J C K, et al. Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting[J]. Journal of Power Sources, 2020, 455: 227983. doi: 10.1016/j.jpowsour.2020.227983
    [10] CUI Y J, WANG B L, WANG P. Analysis of thermally induced delamination and buckling of thin-film thermoelectric generators made up of pn-junctions[J]. International Journal of Mechanical Sciences, 2018, 149: 393-401. doi: 10.1016/j.ijmecsci.2017.10.049
    [11] KOGO G, XIAO B, DANQUAH S, et al. A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask[J]. Scientific Reports, 2020, 10(1): 1067. doi: 10.1038/s41598-020-57991-y
    [12] ROJAS J P, SINGH D, CONCHOUSO D, et al. Stretchable helical architecture inorganic-organic hetero thermoelectric generator[J]. Nano Energy, 2016, 30: 691-699. doi: 10.1016/j.nanoen.2016.10.054
    [13] XU X J, ZUO Y, CAI S, et al. Three-dimensional helical inorganic thermoelectric generators and photodetectors for stretchable and wearable electronic devices[J]. Journal of Materials Chemistry C, 2018, 6(18): 4866-4872. doi: 10.1039/C8TC01183D
    [14] FENG R, TANG F, ZHANG N, et al. Flexible, high-power density, wearable thermoelectric nanogenerator and self-powered temperature sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38616-38624.
    [15] LEE G, KIM C S, KIM S, et al. Flexible heatsink based on a phase-change material for a wearable thermoelectric generator[J]. Energy, 2019, 179: 12-18. doi: 10.1016/j.energy.2019.05.018
    [16] FUKUIE K, IWATA Y, IWASE E. Design of substrate stretchability using origami-like folding deformation for flexible thermoelectric generator[J]. Micromachines, 2018, 9(7): 315. doi: 10.3390/mi9070315
    [17] PARK H, LEE D, KIM D, et al. High power output from body heat harvesting based on flexible thermoelectric system with low thermal contact resistance[J]. Journal of Physics D: Applied Physics, 2018, 51(36): 365501. doi: 10.1088/1361-6463/aad270
    [18] 周世奇, 侯秀慧, 邓子辰. 一般宏观应力状态下凹角蜂窝结构的屈曲性能分析[J]. 应用数学和力学, 2023, 44(1): 12-24. doi: 10.21656/1000-0887.430202

    ZHOU Shiqi, HOU Xiuhui, DENG Zichen. Buckling analysis of re-entrant honeycomb structures under general macroscopic stress states[J]. Applied Mathematics and Mechanics, 2023, 44(1): 12-24. (in Chinese) doi: 10.21656/1000-0887.430202
    [19] CUI Y J, LIU C, WANG K F, et al. Effect of negative Poisson's ratio architecture on fatigue life and output power of flexible wearable thermoelectric generators[J]. Engineering Fracture Mechanics, 2023, 281: 109142. doi: 10.1016/j.engfracmech.2023.109142
    [20] CUI Y J, LI W J, WANG K F, et al. Thermal shock fracture of honeycomb-based porous thermoelectric materials with non-Fourier heat conduction[J]. Ceramics International, 2024, 50(1): 2151-2161. doi: 10.1016/j.ceramint.2023.10.328
    [21] CUI Y J, WANG B L, WANG K F, et al. An analytical model to evaluate influence of negative Poisson's ratio architecture on fatigue life and energy conversion performance of wearable thermoelectric generator[J]. International Journal of Solids and Structures, 2022, 258: 112000. doi: 10.1016/j.ijsolstr.2022.112000
    [22] WE J H, KIM S J, CHO B J. Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator[J]. Energy, 2014, 73: 506-512. doi: 10.1016/j.energy.2014.06.047
    [23] HU J S, WANG B L, HIRAKATA H, et al. Interfacial thermal damage and fatigue between auxetic honeycomb sandwich and underneath substrate[J]. International Journal of Solids and Structures, 2023, 279: 112364. doi: 10.1016/j.ijsolstr.2023.112364
    [24] PENG J, LI D K, HUANG Z X, et al. Interfacial behavior of a thermoelectric film bonded to a graded substrate[J]. Applied Mathematics and Mechanics(English Edition), 2023, 44(11): 1853-1870. doi: 10.1007/s10483-023-3045-8
    [25] MIAO X Y, LI C F, PAN Y C. Research on the dynamic characteristics of rotating metal-ceramic matrix DFG-CNTRC thin laminated shell with arbitrary boundary conditions[J]. Thin-Walled Structures, 2022, 179: 109475. doi: 10.1016/j.tws.2022.109475
    [26] 王彪. 热力学强度理论[J]. 力学进展, 2023, 53(3): 693-712.

    WANG Biao. Thermodynamic strength theory (TST)[J]. Advances in Mechanics, 2023, 53(3): 693-712. (in Chinese)
    [27] WANG B. The principle of virtual energy for predicting the strength of material structures[J]. Engineering Fracture Mechanics, 2024, 300: 109997. doi: 10.1016/j.engfracmech.2024.109997
    [28] JANSSEN M, ZUIDEMA J, WANHILL R J H. Fracture Mechanics[M]. 2nd ed. London: Spon Press, 2004: 83-106.
    [29] 蒋玉川, 蒲淳清. 用Westergaard应力函数求解Ⅰ-Ⅱ复合型平面裂纹问题的研讨[J]. 力学与实践, 2020, 42(4): 504-507.

    JIANG Yuchuan, PU Chunqing. The problem of Ⅰ-Ⅱ combined plane crack solved with Westergaard stress function[J]. Mechanics in Engineering, 2020, 42(4): 504-507. (in Chinese)
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  98
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-24
  • 修回日期:  2024-05-14
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回