Self-Sustained Vibration of Optically Responsive Liquid Crystal Elastomer Cantilever Beams
-
摘要: 研究了液晶弹性体(LCE)悬臂梁的光驱自持续弯曲振动现象,建立了光驱振动的动力学模型,利用振型叠加法得到其半解析公式,并利用MATLAB软件编程计算其动力学响应规律. 结果表明:在恒定光照作用下,可以实现LCE悬臂梁周期性自激振动响应;同时表明LCE梁弯曲振动的振幅可通过调节光强、阻尼系数和热弛豫时间来控制,而梁振动的频率主要取决于热弛豫时间. 研究结果在远程光驱驱动器、传感器、软微机器人和光能转换系统的设计等领域具有一定的指导意义.Abstract: The light-driven self-sustained bending vibration phenomenon of liquid crystal elastomer (LCE) cantilever beams was investigated, and the dynamics model for light-driven vibration was established, with the semi-analytical formula obtained with the method of vibration shape superposition, and the dynamic response laws calculated by the MATLAB software programming. The results show that, the periodic self-sustained vibration responses of the LCE cantilever beam can be realized under the action of constant light, which theoretically and reasonably explains previous experimental phenomena. Furthermore, the bending vibration amplitude of the LCE beam can be controlled through adjustment of the light intensity, the damping coefficient and the thermal relaxation time, and the beam vibration frequency mainly depends on the thermal relaxation time. This work is of significance in the engineering fields of remote light-driven actuators, sensors, soft micro-robots and light energy conversion systems.
-
Key words:
- liquid crystal elastomer /
- self-sustained vibration /
- cantilever beam /
- light-driven
-
表 1 材料特性和几何参数
Table 1. Material properties and geometrical parameters
symbol parameter value unit T0 thermal characteristic time 0.001~0.1 s ρ mass density 1 000 kg/m3 α damping coefficient 1 kg/(s·m2) l length 0.01 m h thickness 0.000 1 m d0 penetration depth 0.000 01 m E elastic modulus 1 000 Pa ν Poisson’s ratio 0.5 - 表 2 无量纲参数
Table 2. Dimensionless parameters
symbol I α T0 value 0.04~0.1 0.4~1.2 0.1~1 -
[1] WU H Y, ZHANG B, LI K. Synchronous behaviors of three coupled liquid crystal elastomer-based spring oscillators under linear temperature fields[J]. Physical Review E, 2024, 109(2): 024701. [2] HINES L, PETERSEN K, LUM G Z, et al. Soft actuators for small-scale robotics[J]. Advanced Materials, 2017, 29(13): 1603483. http://www.xueshufan.com/publication/2564130887 [3] 武莉, 张涛, 徐智, 等. 热和光刺激响应型离子凝胶研究进展[J]. 河南化工, 2020, 37(4): 1-4.WU Li, ZHANG Tao, XU Zhi, et al. Research progress of thermal and photo stimuli responsive ion gels[J]. Henan Chemical Industry, 2020, 37(4): 1-4. (in Chinese) [4] 李子怡, 顾丽莉, 佟振浩, 等. 水凝胶功能改性研究与应用进展[J]. 高分子通报, 2019(8): 7-13.LI Ziyi, GU Lili, TONG Zhenhao, et al. Functional modification and application progress of hydrogels[J]. Polymer Bulletin, 2019(8): 7-13. (in Chinese) [5] 郑明心, 曾敏, 陈曦, 等. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.ZHENG Mingxin, ZENG Min, CHEN Xi, et al. Structures and applications of photo-responsive shape-changing liquid crystal polymers[J]. Progress in Chemistry, 2021, 33(6): 914-925. (in Chinese) [6] 李允译, 史礼君, 豆波, 等. 电致变形聚合物材料及其应用[J]. 高分子通报, 2020(6): 1-15.LI Yunyi, SHI Lijun, DOU Bo, et al. Electro-induced shape-changing polymer materials and its applications[J]. Polymer Bulletin, 2020(6): 1-15. (in Chinese) [7] 瞿秋阳, 徐艺伟, 徐凡, 等. 力-电-初始取向对液晶凝胶薄膜均匀变形行为影响分析[J]. 力学季刊, 2017, 38(4): 648-657.QU Qiuyang, XU Yiwei, XU Fan, et al. Effect of electric and mechanical loading and initial alignment on uniform deformation behavior of liquid crystal gel membranes[J]. Chinese Quarterly of Mechanics, 2017, 38(4): 648-657. (in Chinese) [8] 倪娜, 叶智鹏, 李东波, 等. 高灵敏度柔性多层等强度梁式力/位移传感器设计及传感理论研究[J]. 应用数学和力学, 2024, 45(6): 775-786. doi: 10.21656/1000-0887.450063NI Na, YE Zhipeng, LI Dongbo, et al. Design and sensing theory for flexible multi-layer equal strength beam force/displacement sensors with high sensitivity[J]. Applied Mathematics and Mechanics, 2024, 45(6): 775-786. (in Chinese) doi: 10.21656/1000-0887.450063 [9] 王奇, 朱寅鑫, 牛培行, 等. 柔性扑翼翼型的气动性能仿真分析[J]. 应用数学和力学, 2022, 43(5): 586-596. doi: 10.21656/1000-0887.430155WANG Qi, ZHU Yinxin, NIU Peixing, et al. Simulation of aerodynamic performances of flexible flapping wing airfoils[J]. Applied Mathematics and Mechanics, 2022, 43(5): 586-596. (in Chinese) doi: 10.21656/1000-0887.430155 [10] 孙志强. 光敏性凝胶的合成与性能研究[D]. 南京: 东南大学, 2016.SUN Zhiqiang. Synthesis and characterization of photoresponsive hydrogel[D]. Nanjing: Southeast University, 2016. (in Chinese) [11] CAMACHO-LOPEZ M, FINKELMANN H, PALFFY-MUHORAY P, et al. Fast liquid-crystal elastomer swims into the dark[J]. Nature Materials, 2004, 3(5): 307-310. http://www.e-lc.org/Documents/1069738363.pdf [12] NÄGELE T, HOCHE R, ZINTH W, et al. Femtosecond photoisomerization of cis-azobenzene[J]. Chemical Physics Letters, 1997, 272(5/6): 489-495. http://www.onacademic.com/detail/journal_1000034130080910_a21a.html [13] WARNER M, TERENTJEV E M. Liquid Crystal Elastomers[M]. Oxford: Oxford University Press, 2007. [14] ZENG H, LAHIKAINEN M, LIU L, et al. Light-fuelled freestyle self-oscillators[J]. Nature Communications, 2019, 10(1): 5057. http://www.xueshufan.com/publication/3002895191 [15] HISCOCK T, WARNER M, PALFFY-MUHORAY P. Solar to electrical conversion via liquid crystal elastomers[J]. Journal of Applied Physics, 2011, 109(10): 104506. http://pdfs.semanticscholar.org/2ee0/243e0a53e0301f8c9c7c8580837369e088cc.pdf [16] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体[J]. 化学进展, 2020, 32(10): 1452-1461.WANG Meng, MA Danyang, WANG Chengjie. Near-infrared light responsive liquid crystal ela stomers[J]. Progress in Chemistry, 2020, 32(10): 1452-1461. (in Chinese) [17] 孙茹悦, 李雪, 谢建强, 等. 具有形状记忆效应的液晶弹性体研究进展[J]. 中国塑料, 2016, 30(10): 1-6.SUN Ruyue, LI Xue, XIE Jianqiang, et al. Recent progress in liquid crystalline elastomers with shape memory properties[J]. China Plastics, 2016, 30(10): 1-6. (in Chinese) [18] 魏彬, 袁国青. 基于形状记忆合金片状驱动器的双稳态复合材料层合板设计与控制[J]. 力学季刊, 2022, 43(4): 812-823.WEI Bin, YUAN Guoqing. Design and control of bistable composite laminates based on shape memory alloy sheet actuator[J]. Chinese Quarterly of Mechanics, 2022, 43(4): 812-823. (in Chinese) [19] 史美娇, 徐慧东, 张建文. 双侧弹性约束悬臂梁的非光滑擦边动力学[J]. 应用数学和力学, 2022, 43(6): 619-630. doi: 10.21656/1000-0887.420177SHI Meijiao, XU Huidong, ZHANG Jianwen. Non-smooth grazing dynamics for cantilever beams with bilateral elastic constraints[J]. Applied Mathematics and Mechanics, 2022, 43(6): 619-630. (in Chinese) doi: 10.21656/1000-0887.420177 [20] 倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1989.NI Zhenhua. Vibration Mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 1989. (in Chinese) [21] CORBETT D, WARNER M. Linear and nonlinear photoinduced deformations of cantilevers[J]. Physical Review Letters, 2007, 99(17): 174302. http://www.onacademic.com/detail/journal_1000036975979810_b414.html [22] MARSHALL J E, TERENTJEV E M. Photo-sensitivity of dye-doped liquid crystal elastomers[J]. Soft Matter, 2013, 9(35): 8547-8551. http://www.researchgate.net/profile/Eugene_Terentjev/publication/262964322_Photo-sensitivity_of_dye-doped_liquid_crystal_elastomers/links/0deec539877f802959000000 [23] FINKELMANN H, NISHIKAWA E, PEREIRA G G, et al. A new opto-mechanical effect in solids[J]. Physical Review Letters, 2001, 87(1): 015501. http://www.onacademic.com/detail/journal_1000036015797410_96b7.html [24] HOGAN P M, TAJBAKHSH A R, TERENTJEV E M. UV manipulation of order and macroscopic shape in nematic elastomers[J]. Physical Review E, 2002, 65(4): 041720. http://people.bss.phy.cam.ac.uk/~emt1000/uv1.pdf [25] JIN L H, LIN Y, HUO Y Z. A large deflection light-induced bending model for liquid crystal elastomers under uniform or non-uniform illumination[J]. International Journal of Solids and Structures, 2011, 48(22/23): 3232-3242. http://core.ac.uk/download/pdf/81120353.pdf [26] THOMSON W T. Theory of Vibration With Applications[M]. Prentice Hall, 1972. [27] OHM C, SERRA C, ZENTEL R. A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers[J]. Advanced Materials, 2009, 21(47): 4859-4862. http://www.onacademic.com/detail/journal_1000033736516510_d0da.html -