留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于碳纤维的层合结构双极化电磁吸波及其弯曲性能设计

纪正江 程琳豪 郑锡涛 闫雷雷

纪正江, 程琳豪, 郑锡涛, 闫雷雷. 基于碳纤维的层合结构双极化电磁吸波及其弯曲性能设计[J]. 应用数学和力学, 2024, 45(8): 1096-1105. doi: 10.21656/1000-0887.450102
引用本文: 纪正江, 程琳豪, 郑锡涛, 闫雷雷. 基于碳纤维的层合结构双极化电磁吸波及其弯曲性能设计[J]. 应用数学和力学, 2024, 45(8): 1096-1105. doi: 10.21656/1000-0887.450102
JI Zhengjiang, CHENG Linhao, ZHENG Xitao, YAN Leilei. Electromagnetic Wave Dual-Polarized Absorption and Flexural Performance Design of Composite Laminates Based on Carbon Fibers[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1096-1105. doi: 10.21656/1000-0887.450102
Citation: JI Zhengjiang, CHENG Linhao, ZHENG Xitao, YAN Leilei. Electromagnetic Wave Dual-Polarized Absorption and Flexural Performance Design of Composite Laminates Based on Carbon Fibers[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1096-1105. doi: 10.21656/1000-0887.450102

基于碳纤维的层合结构双极化电磁吸波及其弯曲性能设计

doi: 10.21656/1000-0887.450102
基金项目: 

国家自然科学基金 12372141

详细信息
    作者简介:

    纪正江(1998—),男,博士生(E-mail: jzj@mail.nwpu.edu.cn)

    通讯作者:

    闫雷雷(1986—),男,副教授,博士,博士生导师(通讯作者. E-mail: yanleilei@nwpu.edu.cn)

  • 中图分类号: O342

Electromagnetic Wave Dual-Polarized Absorption and Flexural Performance Design of Composite Laminates Based on Carbon Fibers

  • 摘要: 针对现有飞行器复合材料蒙皮难以兼顾承载性能和吸波性能的问题,利用碳纤维预浸料独特的力电特性构造了碳纤维双极化吸波层合结构(carbon fiber dual-polarized absorbing laminated structure, CFDALS). 通过在玻璃纤维层合结构中引入双向碳纤维阵列结构,赋予层合结构双极化电磁波吸收特性,同时利用碳纤维反射层优异的承载性能来增强结构力学性能. 电磁仿真结果表明,该结构对TE极化电磁波在8~18 GHz频带、0°~45°入射角,同时对TM极化电磁波在5~18 GHz频带、0°~60°入射角下平均吸收率均达到90%以上. 三点弯曲仿真结果表明,结构在实现双极化电磁吸波的同时,在碳纤维阵列两个排列方向上表现出较高的比弯曲强度、比弯曲刚度. 通过在玻璃纤维预浸料中引入双向排列的碳纤维预浸料并进行一体化设计,在结构具备双向优异承载性能的同时实现了双极化电磁吸波性能的显著增强,为飞行器蒙皮隐身承载一体化设计提供了一种新的解决方案.
  • 图  1  双极化结构示意图

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Schematic diagram of CFDALS

    图  2  双极化结构与极化敏感结构的吸波性能比较(入射角θ=30°)

    Figure  2.  Comparison of CFDALS and PSS in EM wave absorption properties (incident angle θ=30°)

    图  3  斜入射性能对比TE波入射

    Figure  3.  EM wave absorption performances in oblique incidence

    图  4  碳纤维阵列排布和弯曲加载区域示意图

    Figure  4.  Schematic diagram of CF array distributions and bending load areas

    图  5  三点弯曲性能对比

    Figure  5.  Comparison of 3-point bending performances

    表  1  尺寸参数的优化结果(单位:mm)

    Table  1.   Optimization results of size parameters (unit: mm)

    parameter xl1 xw1 xdl xdw yl1 yw1 ydl ydw
    optimization range 3.0~5.0 2.5~3.0 0.5~1.0 0.5~1.0 1.0~2.0 0.3~0.6 0.4~0.6 0.3~0.4
    optimization result 3.16 2.90 0.56 0.84 1.22 0.46 0.42 0.32
    下载: 导出CSV

    表  2  材料的力学性能

    Table  2.   Mechanical properties of materials

    mechanical property carbon fiber prepreg glass fiber prepreg
    density ρ/(kg/m3) 1 550 1 600
    longitudinal elastic modulus E1/MPa 125 000 34 000
    transverse elastic modulus E2/MPa 12 000 10 300
    Poisson’s ratio μ12, μ13, μ23 0.28, 0.28, 0.44 0.278, 0.278, 0.38
    shear modulus G12/MPa,G13/MPa,G23/MPa 4 500, 4 500, 2 500 2 700, 2 700, 1 500
    fiber tensile strength XT/MPa 2 100 1 300
    fiber compressive strength XC/MPa 1 500 860
    matrix tensile strength YT/MPa 180 160
    matrix compressive strength YC/MPa 240 210
    normal tensile strength ZT/MPa 180 160
    normal compressive strength ZC/MPa 240 210
    shear strength S12/MPa, S13/MPa, S23/MPa 200, 200, 140 140, 140, 80
    下载: 导出CSV

    表  3  Cohesive单元的力学性能

    Table  3.   Mechanical properties of cohesive elements

    density ρc/(kg/m3) modulus strength critical fracture energy
    En/GPa Es/GPa ET/GPa σn/MPa σs/MPa σT/MPa GnC/(J/mm2) GsC/(J/mm2) GTC/(J/mm2)
    1 560 3 1.154 1.154 0.01 0.015 0.001 0.02 0.025 0.025
    下载: 导出CSV

    表  4  MX结构的试验与仿真结果对比

    Table  4.   Comparison of experimental and simulated results of the MX structure

    index test result simulated result simulation error
    density ρMX/(kg/m3) 1 451 1 591 9.6%
    flexural stiffness KMX/(N/mm) 315.48 334.34 6.0%
    specific flexural stiffness KsMX/(N/(kg/m2)) 217.42 210.15 -3.3%
    flexural strength SMX/MPa 825.40 768.36 -6.9%
    specific flexural strength SsMX/(MPa/(kg/m3)) 0.568 8 0.482 9 -15.1%
    下载: 导出CSV

    表  5  双极化结构与极化敏感结构沿xy轴弯曲性能仿真结果对比

    Table  5.   Comparison of flexural property simulation results of CFDALS and PPS along x and y axes

    index flexural property improvement of CFDALS compared with PPS
    MX SX MY SY flexural property in x axis flexural property in y axis
    density ρ/(kg/m3) 1 591 1 577 1 591 1 591 -0.2% 0
    flexural stiffness Kf/(N/mm) 339.31 311.19 271.70 279.92 -8.3% 3.0%
    specific flexural stiffness Ksf/(N/(kg/m2)) 213.27 197.33 170.77 175.94 -7.5% 3.0%
    flexural strength Sf/MPa 768.36 690.11 722.39 784.09 -10.2% 8.5%
    specific flexural strength Ssf/(MPa/(kg/m3)) 0.482 9 0.437 6 0.454 0 0.492 8 -9.3% 8.5%
    下载: 导出CSV
  • [1] 姚智馨, 肖绍球. 超宽带宽角极化不敏感的电路模拟吸波材料设计[J]. 雷达学报, 2021, 10(2): 274-280.

    YAO Zhixin, XIAO Shaoqiu. Wide-angle, ultra-wideband, and polarization-insensitive circuit analog absorbers[J]. Journal of Radars, 2021, 10(2): 274-280. (in Chinese)
    [2] 陈明继, 裴永茂, 方岱宁. 夹芯型雷达吸波结构的多目标优化[J]. 应用数学和力学, 2010, 31(3): 315-323. doi: 10.3879/j.issn.1000-0887.2010.03.007

    CHEN Mingji, PEI Yongmao, FANG Daining. Multi-objective optimization design of radar absorbing sandwich structure[J]. Applied Mathematics and Mechanics, 2010, 31(3): 315-323. (in Chinese) doi: 10.3879/j.issn.1000-0887.2010.03.007
    [3] 陶梅贞, 孙秦, 艾剑良, 等. 现代飞机结构综合设计[M]. 西安: 西北工业大学出版社, 2014.

    TAO Meizhen, SUN Qin, AI Jianliang, et al. Comprehensive Design of Modern Aircraft Structures[M]. Xi'an: Northwestern Polytechnical University Press, 2014. (in Chinese)
    [4] 高彬, 杨文, 彭兴国. 后机身蒙皮的改进优化[J]. 应用数学和力学, 2014, 35(S1): 113-117.

    GAO Bin, YANG Wen, PENG Xingguo. Optimization design of the rear fuselage skin[J]. Applied Mathematics and Mechanics, 2014, 35(S1): 113-117. (in Chinese)
    [5] 张雪霏, 周金堂, 姚正军, 等. CIP/GF/CF/EP吸波复合材料的制备及力学性能[J]. 材料工程, 2019, 47(10): 141-147.

    ZHANG Xuefei, ZHOU Jintang, YAO Zhengjun, et al. Preparation and mechanical property of CIP/GF/CF/EP absorbing composites[J]. Journal of Materials and Engineering, 2019, 47(10): 141-147. (in Chinese)
    [6] YUE J, MA X F, GONG Y L, et al. Constructing 3D heterogeneous flower-like spherical MoS2/CNTs composites with worm-like surface as a superior electromagnetic wave absorber[J]. Solid State Sciences, 2024, 147: 107388. doi: 10.1016/j.solidstatesciences.2023.107388
    [7] ZHU Z X, ZHOU J, LI Y G, et al. Design of a composite metamaterial toward perfect microwave absorption and excellent load-bearing performance[J]. Materials and Design, 2023, 229: 111910. doi: 10.1016/j.matdes.2023.111910
    [8] ZHANG C G, JI S J, ZHAO J, et al. Design and analysis of a polarization-independent and incident angle insensitive triple-band metamaterial absorber[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138: 115131. doi: 10.1016/j.physe.2021.115131
    [9] WANG C X, CHEN M J, LEI H S, et al. Radar stealth and mechanical properties of a broadband radar absorbing structure[J]. Composites Part B: Engineering, 2017, 123: 19-27. doi: 10.1016/j.compositesb.2017.05.005
    [10] HUANG Y X, YUAN X J, CHEN M J, et al. Ultrathin multifunctional carbon/glass fiber reinforced lossy lattice metastructure for integrated design of broadband microwave absorption and effective load bearing[J]. Carbon, 2018, 144: 449-456.
    [11] GOU G J, HUA W L, LIU K Y, et al. Bimetallic MOF@wood-derived hierarchical porous carbon composites for efficient microwave absorption[J]. Diamond and Related Materials, 2024, 141: 110688. doi: 10.1016/j.diamond.2023.110688
    [12] KONG W W, SHI J F, ZOU K K, et al. Synergistically optimizing interlaminar and electromagnetic interference shielding behavior of carbon fiber composite based on interfacial reinforcement[J]. Carbon, 2022, 200: 448-455. doi: 10.1016/j.carbon.2022.08.080
    [13] LIU Z X, ZHANG R B, WANG S J, et al, Design and fabrication of an all-composite ultra-broadband absorbing structure with superior load-bearing capacity[J]. Composites Science and Technology, 2023, 240: 110094. doi: 10.1016/j.compscitech.2023.110094
    [14] 刘鑫, 吴倩倩, 于国财, 等. 碳纤维/树脂基复合材料曲壁蜂窝夹芯结构的三点弯曲性能[J]. 应用数学和力学, 2022, 43(5): 490-498.

    LIU Xin, WU Qianqian, YU Guocai, et al. Three-point bending properties of carbon fiber reinforced polymer composite honeycomb sandwich structures with curved wall[J]. Applied Mathematics and Mechanics, 2022, 43(5): 490-498. (in Chinese)
    [15] 陆晓欣. 碳纤维增强树脂基复合材料表面阻抗调制与结构吸波性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    LU Xiaoxin. Research on the surface impedance modulation and structural absorbing properties of carbon fiber reinforced plastic[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
    [16] ZHANG Z, LEI H S, YANG H Y, et al. Novel multifunctional lattice composite structures with superior load-bearing capacities and radar absorption characteristics[J]. Composites Science and Technology, 2021, 216: 109064.
    [17] LI C, CAO Q S, ZHOU G M, et al. Design and study of a new broadband RCS carbon-glass fiber hybrid metamaterial[J]. Composite Structures, 2022, 301: 1116207.
    [18] JIN D H, JANG M S, CHOI J H, et al. Multi-slab hybrid radar absorbing structure containing short carbon fiber layer with controllable permittivity[J]. Composite Structures, 2021, 273: 114279.
    [19] LI C, CAO Q S, ZHOU G M, et al. A new stitched-plain weave fabric composite structure with reduced broadband radar cross-section[J]. Composite Structures, 2023, 321: 117261.
    [20] 王黄腾龙. 宽入射角电磁超介质吸波材料吸波机理研究[D]. 成都: 电子科技大学, 2014.

    WANG Huangtenglong. Theoretical analyse of wide-angle metamaterial absorber[D]. Chengdu: University of Electronic Science and Technology of China, 2014. (in Chinese)
    [21] 姚智馨. 超宽带宽入射角的电路模拟吸波材料机理与设计方法研究[D]. 成都: 电子科技大学, 2021.

    YAO Zhixin. Research on mechanism and design of ultra-wideband wide-angle circuit analog absorbers[D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese)
    [22] 张海丰, 李颖, 王东方, 等. 斜入射时平板吸波材料电磁参数匹配规律研究[J]. 江西师范大学学报(自然科学版), 2017, 41(6): 641-644.

    ZHANG Haifeng, LI Ying, WANG Dongfang, et al. The study on the electromagnetic matching laws of absorbing materials at the oblique incidence of electromagnetic wave[J]. Journal of Jiangxi Normal University(Natural Science), 2017, 41(6): 641-644. (in Chinese)
    [23] 纪正江, 董佳晨, 梁良, 等. 面向飞机蒙皮的碳纤维预浸料吸波承载一体化层合结构设计[J/OL]. 复合材料学报, 2024: 1-10[2024-06-06]. https://doi.org/10.13801/j.cnki.fhclxb.20231019.003.

    JI Zhengjiang, DONG Jiachen, LIANG Liang, et al. Design of carbon fiber prepreg microwave absorbing and load-bearing integrated laminated structure for aircraft skin[J/OL]. Acta Materiae Compositae Sinica, 2024: 1-10[2024-06-06]. https://doi.org/10.13801/j.cnki.fhclxb.20231019.003. (in Chinese)
    [24] CHENG L H, SI Y, JI Z J, et al. A novel linear gradient carbon fiber array integrated square honeycomb structure with electromagnetic wave absorption and enhanced mechanical performances[J]. Composite Structures, 2023, 305: 116510.
    [25] 曾庆敦, 黄小清, 林雪慧. 层内混杂复合材料应力集中问题的研究[J]. 应用数学和力学, 2001, 22(2): 135-139.

    ZENG Qingdun, HUANG Xiaoqing, LIN Xuehui. Study on stress concentrations in an intraply hybrid composite sheet[J]. Applied Mathematics and Mechanics, 2001, 22(2): 135-139. (in Chinese)
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  120
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-06-06
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回