留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陶瓷混杂点阵夹芯超结构的承载与抗多点侵彻性能

郑冰倩 强鹭升 宋萧彤 倪长也 张瑞

郑冰倩, 强鹭升, 宋萧彤, 倪长也, 张瑞. 陶瓷混杂点阵夹芯超结构的承载与抗多点侵彻性能[J]. 应用数学和力学, 2024, 45(8): 1037-1046. doi: 10.21656/1000-0887.450101
引用本文: 郑冰倩, 强鹭升, 宋萧彤, 倪长也, 张瑞. 陶瓷混杂点阵夹芯超结构的承载与抗多点侵彻性能[J]. 应用数学和力学, 2024, 45(8): 1037-1046. doi: 10.21656/1000-0887.450101
ZHENG Bingqian, QIANG Lusheng, SONG Xiaotong, NI Changye, ZHANG Rui. Load-Bearing and Multi-Point Ballistic Performances of Hybrid Sandwich Meta-Structures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1037-1046. doi: 10.21656/1000-0887.450101
Citation: ZHENG Bingqian, QIANG Lusheng, SONG Xiaotong, NI Changye, ZHANG Rui. Load-Bearing and Multi-Point Ballistic Performances of Hybrid Sandwich Meta-Structures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1037-1046. doi: 10.21656/1000-0887.450101

陶瓷混杂点阵夹芯超结构的承载与抗多点侵彻性能

doi: 10.21656/1000-0887.450101
(我刊青年编委倪长也来稿)
基金项目: 

国家自然科学基金 12302187

国家自然科学基金 12372136

湖北省自然科学基金青年项目 2023AFB092

详细信息
    作者简介:

    郑冰倩(2000—),女,硕士生(E-mail: zzbq991215@163.com)

    通讯作者:

    张瑞(1995—),男,讲师(通讯作者. E-mail: zr19950122@163.com)

  • 中图分类号: O385

Load-Bearing and Multi-Point Ballistic Performances of Hybrid Sandwich Meta-Structures

(Contributed by NI Changye, M.AMM Youth Editorial Board)
  • 摘要: 轻巧、可承载、抗侵彻一体化超结构相较于传统承载结构与披挂装甲,可有效减轻质量并提高空间利用率,在军事装备与国防设施中具有广阔的应用前景. 该文基于陶瓷混杂点阵夹芯超结构,对比了超结构与传统波纹结构在三点弯曲载荷下的承载-位移曲线,并通过实验研究了超结构在多点弹道冲击下的防护性能与抗侵彻机理. 研究结果表明,陶瓷混杂点阵夹芯超结构在弯曲载荷下主要发生陶瓷脆性断裂、面板塑性断裂与胶层开裂等失效,其承载能力高于传统波纹结构. 此外,该文还发现冲击位置与芯体类型影响超结构的抗多发特性,陶瓷混杂蜂窝芯体超结构的抗多发性能优于陶瓷混杂波纹芯体超结构. 波纹结构在纵向对陶瓷缺乏约束,而蜂窝芯体对陶瓷的约束作用更强,从而可限制陶瓷损伤面积,使得抗侵彻性能随着冲击次数的增多而基本保持一致.
    1)  (我刊青年编委倪长也来稿)
  • 图  1  波纹结构与超结构的三点弯曲试验

    Figure  1.  The 3-point bending tests of 2 sandwich beams with a corrugated core and a meta-structure, respectively

    图  2  三点弯曲实验下波纹结构和超结构的平均力-位移曲线

    Figure  2.  Average force-displacement curves of corrugated sandwich and meta-structure for the 3-point bending tests

    图  3  波纹结构在三点弯曲实验下的载荷-位移曲线和变形过程图

    Figure  3.  Force-displacement curves and deformation processes of corrugated sandwiches

    图  4  超结构在三点弯曲实验下的载荷-位移曲线和变形过程

    Figure  4.  Force-displacement curves and deformation processes of meta-structure sandwiches

    图  5  抗多点侵彻实验装备示意图

    Figure  5.  Schematic diagram of the experimental setup

    图  6  靶板A被弹丸侵彻后的横切面

    Figure  6.  Transverse cross-sections of the target A after being penetrated by the projectile

    图  7  靶板B经过多次冲击后的细节图

    Figure  7.  The detail view of the Target B after multi-hit

    图  8  陶瓷混杂蜂窝夹芯超结构示意图(单位: mm)

    Figure  8.  Schematic diagram of the hybrid honeycomb sandwich meta-structure (unit: mm)

    图  9  多点弹丸冲击下陶瓷混杂蜂窝夹芯超结构的背部视图与CT扫描视图

    Figure  9.  The back view and the CT view of the hybrid honeycomb sandwich meta-structure under multi-impact loads

    表  1  三点弯曲实验样件

    Table  1.   Samples for 3-point bending

    number structure weight m/g areal density ρa/(kg·m-2)
    T-E-1
    T-E-2
    T-E-3
    corrugated sandwich 91
    88
    88
    9.81
    9.49
    9.49
    L-E-1
    L-E-2
    L-E-3
    corrugated sandwich 88
    88
    88
    9.49
    9.49
    9.49
    T-C-1
    T-C-2
    T-C-3
    meta-structure sandwich 222
    215
    215
    23.95
    23.20
    23.20
    L-C-1
    L-C-2
    L-C-3
    meta-structure sandwich 221
    224
    217
    23.84
    24.17
    23.41
    下载: 导出CSV

    表  2  靶板的配置

    Table  2.   Configurations of target plates

    target thickness of the front sheet tf/mm thickness of the back sheet tb/mm areal density ρa/(kg·m-2)
    A 1 2 59
    B 1 3.3 69.2
    下载: 导出CSV

    表  3  弹道实验结果

    Table  3.   Experimental results

    target No. Vi/(m·s-1) impact location experiment
    N/P w/mm D/mm
    A 1 827 base N 15.2 100
    2 825 side P - -
    B 1 824 base N 10.8 102
    2 829 base N 9.5 115
    3 821 base N 10.5 113
    4 830 side P - -
    下载: 导出CSV

    表  4  弹道实验结果

    Table  4.   Experimental results

    impactlocation No. Vi/(m·s-1) N/P
    center 1 412 P
    center 2 402 P
    center 3 403 P
    node 1 385 N
    node 2 390 N
    node 3 388 N
    下载: 导出CSV
  • [1] 邓通相, 匡格平, 胡兆财, 等. 多再入工况下一体化热防护系统拓扑优化设计[J]. 应用数学和力学, 2023, 44(11): 1299-1310. doi: 10.21656/1000-0887.440163

    DENG Tongxiang, KUANG Geping, HU Zhaocai, et al. Topology optimizations of integrated thermal protection systems in multiple reentry load cases[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1299-1310. (in Chinese) doi: 10.21656/1000-0887.440163
    [2] 柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42(1): 1-14.

    LIU Zhanli, CHU Dongyang, WANG Tao, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading[J]. Applied Mathematics and Mechanics, 2021, 42(1): 1-14. (in Chinese)
    [3] 李金矿, 万文玉, 刘闯. 形状记忆合金蜂窝结构抗冲击性能研究[J]. 应用数学和力学, 2024, 45(1): 34-44. doi: 10.21656/1000-0887.440004

    LI Jinkuang, WAN Wenyu, LIU Chuang. Study on impact resistance of shape memory alloy honeycomb structures[J]. Applied Mathematics and Mechanics, 2024, 45(1): 34-44. (in Chinese) doi: 10.21656/1000-0887.440004
    [4] 余毅磊, 蒋招绣, 王晓东, 等. 轻型陶瓷/金属复合装甲抗垂直侵彻过程中陶瓷碎裂行为研究[J]. 爆炸与冲击, 2021, 41(11): 113301. doi: 10.11883/bzycj-2021-0134

    YU Yilei, JIANG Zhaoxiu, WANG Xiaodong, et al. Research on ceramic fragmentation behavior of lightweight ceramic/metal composite armor during vertical penetration[J]. Explosion and Shock Waves, 2021, 41(11): 113301. (in Chinese) doi: 10.11883/bzycj-2021-0134
    [5] 包阔, 张先锋, 谈梦婷, 等. 子弹撞击碳化硼陶瓷复合靶试验与数值模拟研究[J]. 爆炸与冲击, 2019, 39(12): 123102. doi: 10.11883/bzycj-2018-0462

    BAO Kuo, ZHANG Xianfeng, TAN Mengting, et al. Ballistic test and numerical simulation on penetration of a boron-carbide-ceramic composite target by a bullet[J]. Explosion and Shock Waves, 2019, 39(12): 123102. (in Chinese) doi: 10.11883/bzycj-2018-0462
    [6] GIBSON L J, ASHBY M F. Cellular Solids: Structure and Properties[M]. 2nd ed. Cambridge: Cambridge University Press, 1997.
    [7] EVANS A G, HUTCHINSON J W, ASHBY M F. Multi functionality of cellular metal systems[J]. Progress in Materials Science, 1998, 43(3): 171-221. doi: 10.1016/S0079-6425(98)00004-8
    [8] XIN F X, LU T J. Sound radiation of orthogonality rib-stiffened sandwich structures with cavity absorption[J]. Composites Science & Technology, 2010, 70(15): 2198-2206.
    [9] DHARMASENA K P, WADLEY H N G, XUE Z, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J]. International Journal of Impact Engineering, 2008, 35(9): 1063-1074. doi: 10.1016/j.ijimpeng.2007.06.008
    [10] XUE Z, HUTCHINSON J W. A comparative study of impulse-resistant metal sandwich plates[J]. International Journal of Impact Engineering, 2004, 30(10): 1283-305. doi: 10.1016/j.ijimpeng.2003.08.007
    [11] YUNGWIRTH C J, WADLEY H N G, O'CONNOR J H, et al. Impact response of sandwich plates with a pyramidal lattice core[J]. International Journal of Impact Engineering, 2008, 35(8): 920-936. doi: 10.1016/j.ijimpeng.2007.07.001
    [12] YUNGWIRTH C J, RADFORD D D, ARONSON M, et al. Experiment assessment of the ballistic response of composite pyramidal lattice truss structures[J]. Composites (Part B): Engineering, 2008, 39(3): 556-569. doi: 10.1016/j.compositesb.2007.02.029
    [13] WADLEY H N G, DHARMASENA K P, O'MASTA M R, et al. Impact response of aluminum corrugated core sandwich panels[J]. International Journal of Impact Engineering, 2013, 62: 114-128. doi: 10.1016/j.ijimpeng.2013.06.005
    [14] WADLEY H N G, O'MASTA M R, DHARMASENA K P, et al. Effect of core topology on projectile penetration in hybrid aluminum/alumina sandwich structures[J]. International Journal of Impact Engineering, 201, 62: 99-113.
    [15] NI C Y, LI Y C, XIN F X, et al. Ballistic resistance of hybrid-cored sandwich plates: numerical and experimental assessment[J]. Composites (Part A): Applied Science and Manufacturing, 2013, 46: 69-79. doi: 10.1016/j.compositesa.2012.07.019
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  109
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-09
  • 修回日期:  2024-07-05
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回