A Nodal Force Transfer Method Between Fluid-Structure Grids for Complex Surfaces
-
摘要: 在流体-结构联合分析过程中,获得流体网格计算结果后需要通过合适的数据传递方法将节点载荷映射到结构网格上. 为了满足复杂曲面上节点力的传递精度要求,提出基于临界二面角判据和最大/最小影响半径的搜索算法,完成曲面上插值区域的判定. 采用基于最小势能原理的三维节点力插值方法完成节点力在两套计算网格之间的数据传递,并通过数值算例验证了传递前后载荷分布、合力、合力矩的一致性.Abstract: In the process of fluid-structure coupling analysis, it is necessary to use appropriate data transfer method to map the node load onto the structural grid. To meet the accuracy requirements of nodal force transfer on complex surfaces, a search algorithm based on the critical dihedral angle criterion and the maximum/minimum influence radius was proposed to determine the interpolation area on the surface. A 3D node force interpolation method based on the principle of minimum potential energy was used to transfer node force data between 2 sets of calculation grids, the consistency of load distributions, resultant forces, and resultant moments after transfer was verified through numerical examples.
-
表 1 本文插值算法与商用软件插值精度比较
Table 1. Comparison of interpolation accuracies between the interpolation algorithm in this paper and the commercial software
interpolation algorithm FX/N FY/N FZ/N MX/(N·mm) MY/(N·mm) MZ/(N·mm) CFD result 1 612.3 23.94 -369.46 2 319.2 3 633 438.5 156 605.9 method in this paper after interpolation 1 612.3 23.94 -369.46 2 319.2 3 633 438.5 156 605.9 error/% -2.78E-8 3.67E-8 1.38E-8 3.21E-6 1.76E-8 3.79E-6 inverse-distance (TECPLOT) after interpolation 1 643.4 20.64 -380.68 2 488.75 4 145 487 136 509.9 error/% 1.93 -13.78 3.04 7.31 14.09 -12.83 Kriging (HYPERMESH) after interpolation 1 688.2 25.48 -358.54 2 617.32 3 145 316 185 868 error/% 4.71 6.43 -2.96 12.85 -13.43 18.69 -
[1] 刘基海, 易阅城. 单向及双向流固耦合方法在无人机翼的应用分析[J]. 应用科技, 2022, 49(4): 70-78.LIU Jihai, YI Yuecheng. Application analysis of one-way and two-way fluid-structure coupling method in UAV wing[J]. Applied Science and Technology, 2022, 49(4): 70-78. (in Chinese) [2] HARDER R L, DESMARAIS R N. Interpolation using surface splines[J]. AIAA Journal, 1972, 9(2): 189-191. [3] 林言中, 陈兵, 徐旭. 基于径向基函数插值的气动弹性计算方法[J]. 北京航空航天大学学报, 2014, 40(7): 953-958.LIN Yanzhong, CHEN Bing, XU Xu. Numerical method of aeroelasticity based on radial basis function interpolation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7): 953-958. (in Chinese) [4] 贾欢, 孙秦. 基于径向基函数的动网格技术应用研究[J]. 机械科学与技术, 2013, 32(4): 510-513.JIA Huan, SUN Qin. Analyzing dynamic grid based on radial basis function[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(4): 510-513. (in Chinese) [5] GOURA G S L, BADCOCK K J, WOODGATE M A, et al. A data exchange method for fluid-structure interaction problems[J]. The Aeronautical Journal, 2001, 105(1046): 215-221. [6] 徐敏, 史忠军, 陈士橹. 一种流体-结构耦合计算问题的网格数据交换方法[J]. 西北工业大学学报, 2003, 21(5): 523-535. doi: 10.3969/j.issn.1000-2758.2003.05.004XU Min, SHI Zhongjun, CHEN Shilu. A suitable method for transferring information between CFD and CSD grids[J]. Journal of Northwestern Polytechnical University, 2003, 21(5): 523-535. (in Chinese) doi: 10.3969/j.issn.1000-2758.2003.05.004 [7] 张仕钊, 吴杰, 杨德武, 等. 一种结合壁面模型模拟湍流流动的间断界面浸入边界法[J]. 航空学报, 2023, 44(11): 153-165.ZHANG Shizhao, WU Jie, YANG Dewu, et al. A sharp-interface immersed boundary method combined with wall model to simulate turbulent flow[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(11): 153-165. (in Chinese) [8] 胡芸, 侯明勋. 人群搜索算法拟合Kriging参数的空间数据插值[J]. 湖北大学学报(自然科学版), 2023, 45(6): 865-871.HU Yun, HOU Mingxun. Spatial data interpolation of seeker optimization algorithm fitting Kriging model parameters[J]. Journal of Hubei University (Natural Science), 2023, 45(6): 865-871. (in Chinese) [9] 安伟刚, 梁生云, 陈殿宇. 一种局部动态数据交换方法在流固耦合分析中的应用[J]. 航空学报, 2013, 34(3): 541-546.AN Weigang, LIANG Shengyun, CHEN Dianyu. Local dynamic data exchange in fluid structure interaction analysis[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 541-546. (in Chinese) [10] 叶天麒, 周天孝. 航空结构有限元分析指南[M]. 北京: 航空工业出版社, 1996: 176-178.YE Tianqi, ZHOU Tianxiao. Guide to Finite Element Analysis of Aviation Structures[M]. Beijing: Aviation Industry Press, 1996: 176-178. (in Chinese) [11] 王彪, 杨慧, 郑赟. 流固耦合数据交换的插值精度影响因素研究[J]. 航空计算技术, 2012, 42(4): 85-89.WANG Biao, YANG Hui, ZHENG Yun. Research on data exchange at fluid-structure interface by interpolation[J]. Aeronautical Computing Technique, 2012, 42(4): 85-89. (in Chinese) [12] 许云涛, 檀大林, 杨超. 基于CFD/CSD耦合的高速射弹尾拍载荷特性研究[J]. 北京航空航天大学学报, 2023, 49(9): 2539-2546.XU Yuntao, TAN Dalin, YANG Chao. Study on tail-slap load characteristics of high-speed projectile based on CFD/CSD coupling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2539-2546. (in Chinese) [13] 田瑞, 常亮, 韩涛, 等. 输液直管道流-固耦合振动响应计算方法与应用[J]. 应用数学和力学, 2024, 45(12): 1494-1505. doi: 10.21656/1000-0887.440291TIAN Rui, CHANG Liang, HAN Tao, et al. The calculation method and application of fluid-solid coupling vibration responses of straight infusion pipeline[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1494-1505. (in Chinese) doi: 10.21656/1000-0887.440291 [14] 杨博睿, 张桂勇, 王双强, 等. 一种基于改进流固耦合力求解的浸没光滑点插值法[J]. 船舶力学, 2023, 27(10): 1455-1463.YANG Borui, ZHANG Guiyong, WANG Shuangqiang, et al. An immersed smoothed point interpolation method with improved solution of fluid-structure interaction force[J]. Journal of Ship Mechanics, 2023, 27(10): 1455-1463. (in Chinese) [15] 韩伟, 肖中云, 郭永恒, 等. 基于CFD/CSD弱耦合方法的后掠尖旋翼气弹响应分析[J]. 机械设计与制造, 2023, 386(4): 114-117.HAN Wei, XIAO Zhongyun, GUO Yongheng, et al. Aeroelastic response analysis of swept-back rotor based on CFD/CSD weak coupling method[J]. Machinery Design & Manufacture, 2023, 386(4): 114-117. (in Chinese) -