留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相场法的固态电解质内锂枝晶生长的形貌调控及抑制策略

杨佳悦 赵莹

杨佳悦, 赵莹. 基于相场法的固态电解质内锂枝晶生长的形貌调控及抑制策略[J]. 应用数学和力学, 2025, 46(3): 324-339. doi: 10.21656/1000-0887.450096
引用本文: 杨佳悦, 赵莹. 基于相场法的固态电解质内锂枝晶生长的形貌调控及抑制策略[J]. 应用数学和力学, 2025, 46(3): 324-339. doi: 10.21656/1000-0887.450096
YANG Jiayue, ZHAO Ying. Morphology Control and Suppression of Lithium Dendrite Growth in Solid-State Electrolytes Based on Phase-Field Simulation[J]. Applied Mathematics and Mechanics, 2025, 46(3): 324-339. doi: 10.21656/1000-0887.450096
Citation: YANG Jiayue, ZHAO Ying. Morphology Control and Suppression of Lithium Dendrite Growth in Solid-State Electrolytes Based on Phase-Field Simulation[J]. Applied Mathematics and Mechanics, 2025, 46(3): 324-339. doi: 10.21656/1000-0887.450096

基于相场法的固态电解质内锂枝晶生长的形貌调控及抑制策略

doi: 10.21656/1000-0887.450096
我刊青年编委赵莹来稿
基金项目: 

国家自然科学基金青年科学基金 12102305

详细信息
    作者简介:

    杨佳悦(2000—),女,硕士(E-mail: yangjiayue0307@163.com)

    通讯作者:

    赵莹(1988—),女,特聘研究员,博士生导师(通讯作者. E-mail: 19531@tongji.edu.cn)

  • 中图分类号: O34

Morphology Control and Suppression of Lithium Dendrite Growth in Solid-State Electrolytes Based on Phase-Field Simulation

Contributed by ZHAO Ying, M.AMM Youth Editorial Board
  • 摘要: 传统液态电解质的易燃易爆性带来的安全隐患,推动了基于固态电解质系统的全固态锂电池开发. 然而,锂枝晶生长问题仍然是阻碍固态锂电池商业化应用的一个亟待解决的关键难题. 因此,深入探究固态电解质内锂枝晶生长的形貌调控机制及抑制策略,对于提高固态锂电池的循环寿命并推动其广泛应用至关重要. 该工作基于相场法,通过构建力-电化学的多场耦合模型,动态地演示了锂枝晶生长形貌及其力学行为,并探讨了模型参数/条件对锂枝晶形貌的调控和抑制作用. 结果表明:低水平的界面反应率系数能有效减缓锂枝晶的生长速度,同时还极大地降低了其根部承受大机械应力的范围;通过改变固态电解质材料内锂离子的各向异性扩散程度,可以实现枝晶形貌从纤维状到扁平状的转变;多晶成核对于晶间相互靠近的侧枝具有抑制作用,最高应力为单晶成核的3~5倍;高弹性模量的固态电解质对于锂枝晶生长有显著的力学抑制作用. 该研究有望为固态电解质的优化设计以抑制固态锂金属电池的枝晶生长提供参考.
    1)  我刊青年编委赵莹来稿
  • 图  1  固态电解质内锂枝晶生长的相场模拟

    Figure  1.  Phase-field simulation of lithium dendrite growth within solid-state electrolyte

    图  2  求解域及边界条件示意图

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Schematic diagram of solving domain and boundary conditions

    图  3  几何结构示意图

    Figure  3.  Schematic diagram of the geometric structure

    图  4  不同网格单元尺寸下,a线上相场序参量ξ随时间的一维分布

    Figure  4.  The 1D distributions of phase-field order parameter ξ over time on the a-line under different grid cell sizes

    图  5  不同时间步长下,相场序参量ξ和锂离子浓度$ \tilde{c}_{+}$的二维分布

    Figure  5.  The 2D distributions ofξ and $ \tilde{c}_{+}$ at different time steps

    图  6  不同时间步长下,枝晶生长过程中各区域的Von Mises应力分布

    Figure  6.  Distributions of Von Mises stresses in different regions during dendrite growth at different time steps

    图  7  不同时刻下,a线和b线上的Von Mises应力分布

    Figure  7.  Distributions of Von Mises stresses on the a-line and the b-line at different time steps

    图  8  不同时间步长下,锂枝晶生长过程中的正应力分布

    Figure  8.  Distributions of normal stresses during lithium dendrite growth at different time steps

    图  9  不同时间步长下,a线和b线上的正应力分布

    Figure  9.  Distributions of normal stresses on the a-line and the b-line at different time steps

    图  10  实验中锂枝晶的观测形貌[6]与本模型的模拟结果

    Figure  10.  Observed morphologies of lithium dendrites in the experiment[6] and the simulation results of this model

    图  11  界面反应率系数对锂枝晶形貌和应力分布的影响

    Figure  11.  The influences of the interface reactivity coefficient on the lithium dendrite morphology and the stress distribution

    图  12  固态电解质内锂离子的各向异性扩散对枝晶形貌和离子浓度分布的影响

    Figure  12.  The influences of anisotropic diffusion of lithium ions in solid-state electrolytes on the dendrite morphology and the lithium ion concentration distribution

    图  13  多晶成核设置下的锂枝晶生长形貌及应力分布

    Figure  13.  Lithium dendrite growth morphologies and stress distributions under polycrystalline nucleation settings

    图  14  液态/固态电解质内锂枝晶生长的形貌对比

    Figure  14.  Morphological comparison of lithium dendrite growth in liquid/solid-state electrolytes

    图  15  不同弹性模量的固态电解质内锂枝晶形貌及应力变化情况

    Figure  15.  Morphologies and stresses of lithium dendrites in solid-state electrolytes with different elastic moduli

    表  1  应力耦合的相场模型对比

    Table  1.   Comparison of mechanically coupled phase-field models

    model mechanically coupled phase-field model reference
    model 1 $ \begin{gathered} \frac{\partial \xi}{\partial t}=-L_\sigma\left(\frac{\delta \varSigma}{\delta \xi}+\Delta \mu_{\mathrm{m}}\right)-L_\eta h^{\prime}(\xi)\left\{\exp \left[\frac{(1-\alpha) z F \eta_{\mathrm{a}}}{R T}\right]-\widetilde{c}_{+} \exp \left[-\frac{\alpha z F \eta_{\mathrm{a}}}{R T}\right]\right\} \\ \Delta \mu_{\mathrm{m}}=\frac{\partial g_{\text {mech }}\left(\boldsymbol{\varepsilon}^{\mathrm{E}}\right)}{\partial \xi} \end{gathered}$ [13, 16]
    model 2 $ \begin{gathered} \frac{\partial \xi}{\partial t}=-L_\sigma\left(\frac{\delta \varSigma}{\delta \xi}+\Delta \mu_{\mathrm{m}}\right)-L_\eta h^{\prime}(\xi)\left\{\exp \left[\frac{(1-\alpha) z F \eta_{\mathrm{a}}}{R T}\right]-\tilde{c}_{+} \exp \left[-\frac{\alpha z F \eta_{\mathrm{a}}}{R T}\right]\right\} \\ \Delta \mu_{\mathrm{m}}=\beta \sigma_{\mathrm{m}}+\frac{1}{2} \frac{\partial g_{\text {mech }}\left(\boldsymbol{\varepsilon}^{\mathrm{E}}\right)}{\partial \xi} \end{gathered}$ [15, 17]
    β is the stress factor, and σm is the average of the maximum and minimum stresses of dendrite
    model 3 $ \begin{gathered} \frac{\partial \xi}{\partial t}=-L_\sigma \frac{\delta \varSigma}{\delta \xi}-L_\eta h^{\prime}(\xi)\left\{\exp \left[\frac{(1-\alpha) z F \eta_{\mathrm{a}}}{R T}\right]-\widetilde{c}_{+} \exp \left[-\frac{\alpha\left(z F \eta_{\mathrm{a}}+\mu_{\mathrm{m}}\right)}{R T}\right]\right\} \\ \Delta \mu_{\mathrm{m}}=V_{\mathrm{Li}} \Delta P \end{gathered}$ [14, 18]
    ΔP is the hydrostatic pressure acting on the reaction front and VLi is the molar volume of lithium
    下载: 导出CSV

    表  2  相场模拟参数

    Table  2.   Phase-field simulation parameters

    parameter symbol value reference
    interface migration coefficient Lσ/(m3/(J·s)) 1×10-6 [21]
    interface reaction rate coefficient Lη/s-1 0.5 [13]
    gradient energy coefficient κ/(J/m) 1×10-7 [13]
    lithium metal site density cs/(mol/m3) 7.64×104 [11]
    diffusion coefficient of lithium metal electrode De/(m2/s) 2×10-15 [2]
    diffusion coefficient of solid electrolyte Ds/(m2/s) 1×10-14 [2]
    conductivity of lithium metal electrode de/(S/m) 1×107 [11, 22]
    solid-state electrolyte conductivity ds/(S/m) 0.1 [14]
    elastic modulus of lithium metal electrode Ee/GPa 7.8 [23]
    elastic modulus of solid electrolyte Es/GPa 0.2 [24]
    Poisson’s ratio of lithium metal electrode νe 0.42 [25]
    Poisson’s ratio of solid electrolyte νs 0.3 [26]
    Molar volume of lithium in lithium metal electrode VLi/(m3/mol) 1.3×10-5 [14]
    下载: 导出CSV

    表  3  采用的固态电解质及其弹性模量

    Table  3.   Adopted solid-state electrolytes and corresponding elastic moduli

    type of solid electrolyte elastic modulus /GPa reference
    poly(ethylene oxide) (PEO) 0.099 [29]
    polyacrylic acid (PAA) (wet) 0.2 [24]
    polypropylene (PP) (HY-6100) 0.5 [30]
    polyacrylonitrile (PAN) 0.8 [24]
    下载: 导出CSV
  • [1] XU R C, XIA X H, ZHANG S Z, et al. Interfacial challenges and progress for inorganic all-solid-state lithium batteries[J]. Electrochimica Acta, 2018, 284 : 177-187. doi: 10.1016/j.electacta.2018.07.191
    [2] CHEN Y, YUAN X, HE C, et al. Mechanistic exploration of dendrite growth and inhibition for lithium metal batteries[J]. Energies, 2023, 16 (9): 3745. doi: 10.3390/en16093745
    [3] ZHAO Y, STEIN P, BAI Y, et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries[J]. Journal of Power Sources, 2019, 413 : 259-283. doi: 10.1016/j.jpowsour.2018.12.011
    [4] TIAN J, CHEN Z, ZHAO Y. Review on modeling for chemo-mechanical behavior at interfaces of all-solid-state lithium-ion batteries and beyond[J]. ACS Omega, 2022, 7 (8): 6455-6462. doi: 10.1021/acsomega.1c06793
    [5] LIN R, HE Y, WANG C, et al. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries[J]. Nature Nanotechnology, 2022, 17 (7): 768-776. doi: 10.1038/s41565-022-01148-7
    [6] GOLOZAR M, PAOLELLA A, DEMERS H, et al. In situ observation of solid electrolyte interphase evolution in a lithium metal battery[J]. Communications Chemistry, 2019, 2 : 131. doi: 10.1038/s42004-019-0234-0
    [7] CHANG H J, TREASE N M, ILOTT A J, et al. Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6Li/7Li NMR and SEM[J]. The Journal of Physical Chemistry C, 2015, 119 (29): 16443-16451. doi: 10.1021/acs.jpcc.5b03396
    [8] 杨帆, 刘彬, 方岱宁. 基于相场方法的铁基合金高温氧化与生长应力分析[J]. 应用数学和力学, 2011, 32 (6): 710-717. doi: 10.3879/j.issn.1000-0887.2011.06.008

    YANG Fan, LIU Bin, FANG Daining. Analysis on high-temperature oxidation and the growth stress of iron-based alloy using phase field method[J]. Applied Mathematics and Mechanics, 2011, 32 (6): 710-717. (in Chinese) doi: 10.3879/j.issn.1000-0887.2011.06.008
    [9] LIANG L, QI Y, XUE F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2012, 86 : 051609. doi: 10.1103/PhysRevE.86.051609
    [10] LIANG L, CHEN L Q. Nonlinear phase field model for electrodeposition in electrochemical systems[J]. Applied Physics Letters, 2014, 105 (26): 263903. doi: 10.1063/1.4905341
    [11] CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300 : 376-385. doi: 10.1016/j.jpowsour.2015.09.055
    [12] YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265 : 609-619. doi: 10.1016/j.electacta.2018.01.212
    [13] SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J]. Advanced Energy Materials, 2021, 11 (10): 2003416. doi: 10.1002/aenm.202003416
    [14] TANTRATIAN K, YAN H, ELLWOOD K, et al. Unraveling the Li penetration mechanism in polycrystalline solid electrolytes[J]. Advanced Energy Materials, 2021, 11 (13): 2003417. doi: 10.1002/aenm.202003417
    [15] WANG Z, JIANG W, ZHAO Y, et al. Chemo-mechanical coupling phase-field modeling of lithium dendrite growth within solid electrolyte[J]. Journal of Solid State Electrochemistry, 2023, 27 (1): 245-253. doi: 10.1007/s10008-022-05316-6
    [16] YANG H, WANG Z. Effects of pressure, temperature, and plasticity on lithium dendrite growth in solid-state electrolytes[J]. Journal of Solid State Electrochemistry, 2023, 27 (10): 2607-2618. doi: 10.1007/s10008-023-05560-4
    [17] WANG X, WANG B, MEYERSON M, et al. A phase-field model integrating reaction-diffusion kinetics and elasto-plastic deformation with application to lithiated selenium-doped germanium electrodes[J]. International Journal of Mechanical Sciences, 2018, 144 : 158-171. doi: 10.1016/j.ijmecsci.2018.05.040
    [18] MA H, XIONG X, GAO P, et al. Eigenstress model for electrochemistry of solid surfaces[J]. Scientific Reports, 2016, 6 : 26897. doi: 10.1038/srep26897
    [19] SARKAR S, AQUINO W. Changes in electrodic reaction rates due to elastic stress and stress-induced surface patterns[J]. Electrochimica Acta, 2013, 111 : 814-822. doi: 10.1016/j.electacta.2013.08.085
    [20] ALLEN S M, CAHN J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metallurgica, 1979, 27 (6): 1085-1095. doi: 10.1016/0001-6160(79)90196-2
    [21] UE M, SAKAUSHI K, UOSAKI K. Basic knowledge in battery research bridging the gap between academia and industry[J]. Materials Horizons, 2020, 7 (8): 1937-1954. doi: 10.1039/D0MH00067A
    [22] GAO L, GUO Z. Phase-field simulation of Li dendrites with multiple parameters influence[J]. Computational Materials Science, 2020, 183 : 109919. doi: 10.1016/j.commatsci.2020.109919
    [23] WANG Y, DANG D, WANG M, et al. Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation[J]. Applied Physics Letters, 2019, 115 (4): 043903. doi: 10.1063/1.5111150
    [24] NGUYEN Q D, OH E S, CHUNG K H. Nanomechanical properties of polymer binders for Li-ion batteries probed with colloidal probe atomic force microscopy[J]. Polymer Testing, 2019, 76 : 245-253. doi: 10.1016/j.polymertesting.2019.03.025
    [25] SAMSONOV G V, STRAUMANIS M E. Handbook of the physicochemical properties of the elements[J]. Physics Today, 1968, 21 (9): 97.
    [26] NARAYAN S, ANAND L. A large deformation elastic-viscoplastic model for lithium[J]. Extreme Mechanics Letters, 2018, 24 : 21-29. doi: 10.1016/j.eml.2018.08.006
    [27] GOLOZAR M, PAOLELLA A, DEMERS H, et al. Direct observation of lithium metal dendrites with ceramic solid electrolyte[J]. Scientific Reports, 2020, 10 (1): 18410. doi: 10.1038/s41598-020-75456-0
    [28] LUO S, WANG Z, LI X, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J]. Nature Communications, 2021, 12 (1): 6968. doi: 10.1038/s41467-021-27311-7
    [29] JOHAN M R, JIMSON S A, GHAZALI N, et al. Structural, thermal, electrical and mechanical properties of nanosilica-composite polymer electrolytes[J]. International Journal of Materials Research, 2011, 102 (4): 413-419. doi: 10.3139/146.110498
    [30] DA COSTA H M, RAMOS V D, DE OLIVEIRA M G. Degradation of polypropylene (PP) during multiple extrusions: thermal analysis, mechanical properties and analysis of variance[J]. Polymer Testing, 2007, 26 (5): 676-684. doi: 10.1016/j.polymertesting.2007.04.003
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  22
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-12
  • 修回日期:  2024-05-15
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回