留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄膜天线航天器刚-柔-热耦合动力学建模与复合控制研究

陈呈 刘翔

陈呈, 刘翔. 薄膜天线航天器刚-柔-热耦合动力学建模与复合控制研究[J]. 应用数学和力学, 2025, 46(3): 283-297. doi: 10.21656/1000-0887.450094
引用本文: 陈呈, 刘翔. 薄膜天线航天器刚-柔-热耦合动力学建模与复合控制研究[J]. 应用数学和力学, 2025, 46(3): 283-297. doi: 10.21656/1000-0887.450094
CHEN Cheng, LIU Xiang. Rigid-Flexible-Thermal Coupling Dynamic Modeling and Hybrid Control of Membrane Antenna Spacecraft[J]. Applied Mathematics and Mechanics, 2025, 46(3): 283-297. doi: 10.21656/1000-0887.450094
Citation: CHEN Cheng, LIU Xiang. Rigid-Flexible-Thermal Coupling Dynamic Modeling and Hybrid Control of Membrane Antenna Spacecraft[J]. Applied Mathematics and Mechanics, 2025, 46(3): 283-297. doi: 10.21656/1000-0887.450094

薄膜天线航天器刚-柔-热耦合动力学建模与复合控制研究

doi: 10.21656/1000-0887.450094
基金项目: 

国家自然科学基金 12102252

国家自然科学基金 12172214

12172214 CSTB2023NSCQ-MSX0761

详细信息
    作者简介:

    陈呈(2001—),男,硕士生(E-mail: cc2821619240@sjtu.edu.cn)

    通讯作者:

    刘翔(1993—),男,助理研究员,博士,硕士生导师(通讯作者. E-mail: codyxiang@sjtu.edu.cn)

  • 中图分类号: TU311.3;TU352.1

Rigid-Flexible-Thermal Coupling Dynamic Modeling and Hybrid Control of Membrane Antenna Spacecraft

  • 摘要: 大型空间薄膜天线在深空探测、天基预警、对地观测等领域具有广阔的应用前景.由于薄膜天线具有大、轻、柔的显著特征,其动力学与控制问题十分复杂且突出.与此同时,由于天线工作性能的需求,天线在轨运行时必须保持极高的指向精度和形面精度.这就要求我们对薄膜航天器进行精细的动力学分析与有效的主动控制设计.该文针对一类平面张拉式薄膜天线进行刚-柔-热耦合动力学建模与复合控制问题的研究.首先,基于非线性有限元方法建立了薄膜天线结构的非线性动力学模型,并对该模型进行了模型降阶.然后,基于非线性降阶模型并考虑空间热环境的影响,采用混合坐标法建立了航天器的刚-柔-热耦合动力学模型.最后,采用合力合成控制方法结合拉索作动的非线性振动控制策略,对航天器的姿态运动和非线性振动进行了同步、复合控制.
  • 图  1  薄膜天线航天器

    Figure  1.  The membrane antenna spacecraft

    图  2  薄膜天线航天器在轨热环境

    Figure  2.  The heat flux for the orbiting membrane antenna

    图  3  薄膜天线航天器坐标系统示意图

    Figure  3.  Coordinate systems of the membrane antenna spacecraft

    图  4  薄膜天线航天器姿态-振动复合控制

    Figure  4.  The hybrid control system for the membrane antenna spacecraft

    图  5  时间-燃料最优控制输入

    Figure  5.  The time-fuel optimal control

    图  6  分力合成控制方法

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  The component synthesis vibration suppression method

    图  7  薄膜天线姿态机动过程中的温度变化

    Figure  7.  Temperatures of the membrane antenna during attitude maneuvering

    图  8  仅在时间-燃料最优控制输入下薄膜天线航天器的刚-柔耦合系统动力学响应

    Figure  8.  Rigid-flexible coupling dynamic responses of the membrane antenna spacecraft under time-fuel optimal control

    图  9  薄膜天线航天器分力合成控制力矩

    Figure  9.  Attitude control input obtained with the component synthesis vibration suppression method

    图  10  脉冲宽度调制后的薄膜天线航天器分力合成控制输入

    Figure  10.  Attitude control input after pulse width modulation

    图  11  复合控制下薄膜天线航天器的刚-柔耦合系统动力学响应

    Figure  11.  Rigid-flexible coupling dynamic responses of the membrane antenna spacecraft under the proposed hybrid control method

    表  1  薄膜天线航天器材料参数

    Table  1.   Material parameters of thin-film antenna spacecraft

    part material property value
    satellite length /m 1
    width /m 1
    height /m 1
    mass /kg 150
    membrane array Young’s modulus /GPa 3.5
    Poisson’s ratio 0.34
    density /(kg/m3) 1 530
    length /m 23.4
    width /m 5.6
    thickness /m 0.000 25
    support frame Young’s modulus /GPa 40
    Poisson’s ratio 0.3
    density /(kg/m3) 1 800
    length /m 24
    width /m 7
    cross-sectional area /m2 0.000 318
    moment of inertia of the z-axis /m4 0.000 001 26
    moment of inertia of the y-axis /m4 0.000 000 37
    tension cable Young’s modulus /GPa 133
    Poisson’s ratio 0.36
    density /(kg/m3) 1 440
    cross-sectional area /m2 0.000 000 049
    tensioning force in the x axis direction /N 50
    tensioning force in the y axis direction /N 50
    tension pole Young’s modulus /GPa 210
    Poisson’s ratio 0.3
    density /(kg/m3) 1 800
    length /m 7
    cross-sectional area /m2 0.000 178
    moment of inertia of the z-axis /m4 0.000 000 012 5
    moment of inertia of the y-axis /m4 0.000 000 012 5
    下载: 导出CSV
  • [1] 董召勇, 徐融, 郭海波. 一种空间碎片天基测量定位技术与参数优化[J]. 航天器工程, 2023, 32(5): 40-48.

    DONG Zhaoyong, XU Rong, GUO Haibo. Space-based position technology for space debris and parameters optimization design[J]. Spacecraft Engineering, 2023, 32(5): 40-48. (in Chinese)
    [2] MODI V J. Attitude dynamics of satellites with flexible appendages: a brief review[J]. Journal of Spacecraft and Rockets, 1974, 11(11): 743-751. doi: 10.2514/3.62172
    [3] PREUMONT A. Vibration Control of Active Structures: an Introduction[M]. Berlin: Springer, 2018.
    [4] 关晓东, 杨雷. 带有大型柔性附件的变结构航天器动力学与控制仿真技术研究[C]// 全国第十二届空间及运动体控制技术学术会议. 桂林, 2006.

    GUAN Xiaodong, YANG Lei. Study on dynamics and control simulation technology of variable structure spacecraft with large flexible appendage[C]//Proceedings of the 12th National Conference on Space and Motion Control Technology. Guilin, 2006. (in Chinese)
    [5] 蒋建平, 李东旭. 带太阳帆板航天器刚柔耦合动力学研究[J]. 航空学报, 2006, 27(3): 418-422. doi: 10.3321/j.issn:1000-6893.2006.03.013

    JIANG Jianping, LI Dongxu. Research on rigid-flexible coupling dynamics of spacecraft with solar panel[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3): 418-422. (in Chinese) doi: 10.3321/j.issn:1000-6893.2006.03.013
    [6] 和兴锁, 邓峰岩, 张烈霞, 等. 大型空间刚柔耦合组合体的动力学建模[J]. 机械科学与技术, 2004, 23(5): 543-545. doi: 10.3321/j.issn:1003-8728.2004.05.014

    HE Xingsuo, DENG Fengyan, ZHANG Liexia, et al. Dynamics modeling of large coupled rigid-flexible space platform system[J]. Mechanical Science and Technology, 2004, 23(5): 543-545. (in Chinese) doi: 10.3321/j.issn:1003-8728.2004.05.014
    [7] HU Q, SHI P, GAO H. Adaptive variable structure and commanding shaped vibration control of flexible spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 804-815. doi: 10.2514/1.24441
    [8] DA FONSECA I M, RADE D A, GOES L C S, et al. Attitude and vibration control of a satellite containing flexible solar arrays by using reaction wheels, and piezoelectric transducers as sensors and actuators[J]. Acta Astronautica, 2017, 139: 357-366. doi: 10.1016/j.actaastro.2017.07.018
    [9] LIU X, CAI G, PENG F, et al. Active control of large-amplitude vibration of a membrane structure[J]. Nonlinear Dynamics, 2018, 93(2): 629-642. doi: 10.1007/s11071-018-4214-1
    [10] LIU X, CAI G, PENG F, et al. Nonlinear vibration control of a membrane antenna structure[J]. Proceedings of the Institution of Mechanical Engineers (Part G): Journal of Aerospace Engineering, 2019, 233(9): 3273-3285. doi: 10.1177/0954410018794321
    [11] LIU X, LV L, CAI G. Nonlinear model order reduction and vibration control of a membrane antenna structure[J]. Advances in Space Research, 2023, 71(12): 5369-5385. doi: 10.1016/j.asr.2023.02.017
    [12] LIU X, CAI G P. Thermal analysis and rigid-flexible coupling dynamics of a satellite with membrane antenna[J/OL]. International Journal of Aerospace Engineering, 2022[2024-04-11]. https://doi.org/10.1155/2022/3256825.
    [13] 谢超, 张恩杰, 严飙, 等. 空间可展薄膜阵列天线构型设计与验证[J/OL]. 机械工程学报, 2023: 1-9[2024-04-11]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXXB20231018006&dbname=CJFD&dbcode=CJFQ.

    XIE Chao, ZHANG Enjie, YAN Biao, et al. Configuration design and verification of space deployable thin film array antenna[J/OL]. China Industrial Economics, 2023: 1-9[2024-04-11]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXXB20231018006&dbname=CJFD&dbcode=CJFQ. (in Chinese)
    [14] LIU S W, SINGH T. Fuel/time optimal control of spacecraft maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(2): 394-397. doi: 10.2514/2.4053
    [15] 胡庆雷. 挠性航天器姿态机动的主动振动控制[D]. 哈尔滨: 哈尔滨工业大学, 2006.

    HU Qinglei. Active vibration control of flexible spacecraft attitude maneuver[D]. Harbin: Harbin Institute of Technology, 2006. (in Chinese)
    [16] 陕晋军, 刘暾. 挠性结构的分力合成主动振动抑制方法研究[J]. 上海航天, 2001, 18(6): 28-37.

    SHAN Jinjun, LIU Dun. Study on component synthesis active vibration suppression methods for flexible structures[J]. Aerospace Shanghai, 2001, 18(6): 28-37. (in Chinese)
    [17] 唐颖卓, 卢光宇, 蔡国平. 基于绳索作动器的大型太空望远镜桁架结构的振动主动控制[J]. 应用数学和力学, 2022, 43(2): 123-131. doi: 10.21656/1000-0887.420217

    TANG Yingzhuo, LU Guangyu, CAI Guoping. Active vibration control of truss structures for large space telescopes based on cable actuators[J]. Applied Mathematics and Mechanics, 2022, 43(2): 123-131. (in Chinese) doi: 10.21656/1000-0887.420217
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  42
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-11
  • 修回日期:  2024-05-09
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回