留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电半导体光电池输出特性的机械调控研究

杨浩桢 刘金喜 杨万里 胡元太

杨浩桢, 刘金喜, 杨万里, 胡元太. 压电半导体光电池输出特性的机械调控研究[J]. 应用数学和力学, 2024, 45(10): 1279-1287. doi: 10.21656/1000-0887.450088
引用本文: 杨浩桢, 刘金喜, 杨万里, 胡元太. 压电半导体光电池输出特性的机械调控研究[J]. 应用数学和力学, 2024, 45(10): 1279-1287. doi: 10.21656/1000-0887.450088
YANG Haozhen, LIU Jinxi, YANG Wanli, HU Yuantai. Study on Mechanical Modulation of Output Characteristics in Piezoelectric Semiconductor Photovoltaic Cells[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1279-1287. doi: 10.21656/1000-0887.450088
Citation: YANG Haozhen, LIU Jinxi, YANG Wanli, HU Yuantai. Study on Mechanical Modulation of Output Characteristics in Piezoelectric Semiconductor Photovoltaic Cells[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1279-1287. doi: 10.21656/1000-0887.450088

压电半导体光电池输出特性的机械调控研究

doi: 10.21656/1000-0887.450088
基金项目: 

国家自然科学基金 12232007

国家自然科学基金 12102141

国家自然科学基金 11972164

国家自然科学基金 U21A20430

河北省智能材料力学协同创新中心开放课题 KF2024002

详细信息
    作者简介:

    杨浩桢(1997—),男,博士生(E-mail: haozhenyang@hust.edu.cn)

    通讯作者:

    杨万里(1992—),男,讲师,博士(通讯作者. E-mail: wanli_yang_nt1@163.com)

    胡元太(1964—),男,教授,博士,博士生导师(通讯作者. E-mail: hudeng@263.net)

  • 中图分类号: O29

Study on Mechanical Modulation of Output Characteristics in Piezoelectric Semiconductor Photovoltaic Cells

  • 摘要: 压电PN结光电池的性能与其内部的势垒构型和载流子分布密切相关,因此其输出性能可以通过压电性诱导的压电势改变载流子的输运特性来调控. 然而,经典PN结模型因引入了耗尽层等假设而无法描述势垒区内多物理场与载流子的耦合作用,导致其预测结果严重失真. 因此,针对光电池的核心基本单元PN结,建立了力-电-光与载流子全域耦合作用的多场耦合模型,研究了外加机械载荷对ZnO光电池输出特性的调控机理. 结果表明:光照强度固定时,光电池的短路电流、开路电压和最大输出功率均随着压应力的增大而逐渐增加;相反,拉应力不利于光电池性能的提升. 此外,研究还发现,加载区范围大于光照区或n/p区单侧同时受到光照和压应力作用时的调控效果更佳.
  • 图  1  ZnO光电池模型示意图

    Figure  1.  Schematic diagram of the ZnO photovoltaic cell model

    图  2  不同光照强度下光电池的伏安特性曲线和开路电压与短路电流

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  J-V characteristic curves and Jsc and Voc of the photovoltaic cell under different light intensities

    图  3  不同大小加载下光电池的伏安特性曲线和开路电压与短路电流

    Figure  3.  J-V characteristic curves and Jsc and Voc of the photovoltaic cell under different applied stresses

    图  4  不同大小压应力下光电池内的电场增量和电势

    Figure  4.  The electric field increments and potentials of the photovoltaic cell under different applied compressive stresses

    图  5  不同大小压应力下光电池的无量纲化输出功率

    Figure  5.  The normalized output power changes of the photovoltaic cell under different applied compressive stresses

    图  6  光照和加载区域都在n区时光电池的电场增量和电势

    Figure  6.  The electric field increments and potentials of the photovoltaic cell with both the illumination and loading regions in the n-zone

    表  1  不同加载区与光照区组合作用下光电池的输出功率变化

    Table  1.   Normalized output power changes of the photovoltaic cell under different loadings and illuminations in different regions

    x ΔPmax/% x ΔPmax/%
    loaded point position illuminated sub-region loaded point position illuminated sub-region
    0, 1 [0, 1] 6.5 -0.5, 0.5 [-0.5, 0.5] 5.0
    -1, 1 [0, 1] 4.7 -1, 1 [-0.5, 0.5] 2.2
    -1, 0 [0, 1] - -0.5, 0.5 [-1, 1] -
    0, 1 [-1, 1] - -1, 1 [-2, 2] -
    下载: 导出CSV
  • [1] WANG Z L, WU W, FALCONI C, et al. Piezotronics and piezo-phototronics with third-generation semiconductors[J]. MRS Bulletin, 2018, 43(12): 922-927. doi: 10.1557/mrs.2018.263
    [2] 李酽, 刘敏, 刘金城, 等. 氧化锌气敏传感器性能的改善及在民航系统的应用[J]. 材料导报, 2014, 28(21): 53-56.

    LI Yan, LIU Min, LIU Jincheng, et al. Zinc oxide gas sensor: performance improvement and application in civil aviation system[J]. Materials Review, 2014, 28(21): 53-56. (in Chinese)
    [3] 蔡蔚, 孙东阳, 周铭浩, 等. 第三代宽禁带功率半导体及应用发展现状[J]. 科技导报, 2021, 39(14): 42-55.

    CAI Wei, SUN Dongyang, ZHOU Minghao, et al. Third generation wide bandgap power semiconductors and their applications[J]. Science & Technology Review, 2021, 39(14): 42-55. (in Chinese)
    [4] WU C, MEHLMAN Y, KUMAR P, et al. A phased array based on large-area electronics that operates at gigahertz frequency[J]. Nature Electronics, 2021, 4: 757-766. doi: 10.1038/s41928-021-00648-z
    [5] SHAISLAMOV U, KIM H, YANG J M, et al. CuO/ZnO/TiO2 photocathodes for a self-sustaining photocell: efficient solar energy conversion without external bias and under visible light[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6148-6158. doi: 10.1016/j.ijhydene.2019.12.052
    [6] CONSONNI V, BRISCOE J, KÄRBER E, et al. ZnO nanowires for solar cells: a comprehensive review[J]. Nanotechnology, 2019, 30(36): 362001. doi: 10.1088/1361-6528/ab1f2e
    [7] WIBOWO A, MARSUDI M A, AMAL M I, et al. ZnO nanostructured materials for emerging solar cell applications[J]. RSC Advances, 2020, 10(70): 42838-42859. doi: 10.1039/D0RA07689A
    [8] YANG Q, GUO X, WANG W, et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect[J]. ACS Nano, 2010, 4(10): 6285-6291. doi: 10.1021/nn1022878
    [9] SUN J, HUA Q, ZHOU R, et al. Piezo-phototronic effect enhanced efficient flexible perovskite solar cells[J]. ACS Nano, 2019, 13(4): 4507-4513. doi: 10.1021/acsnano.9b00125
    [10] ZHU L, WANG L, PAN C, et al. Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect[J]. ACS Nano, 2017, 11(2): 1894-1900. doi: 10.1021/acsnano.6b07960
    [11] ZHU L, WANG L, XUE F, et al. Piezo-phototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array[J]. Advanced Science, 2017, 4(1): 1600185. doi: 10.1002/advs.201600185
    [12] 刘恩科, 朱秉升, 罗晋生. 半导体物理学[M]. 7版. 北京: 电子工业出版社, 2008.

    LIU Enke, ZHU Bingsheng, LUO Jinsheng. The Physics of Semiconductors[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2008. (in Chinese)
    [13] YANG W, HONG R, YANG H, et al. A high performance piezoelectric hetero-junction based on the configuration reform on interfacial potential barrier[J]. Composite Structures, 2024, 328: 117723. doi: 10.1016/j.compstruct.2023.117723
    [14] YANG W, LIU J, XU Y, et al. A full-coupling model of PN junctions based on the global-domain carrier motions with inclusion of the two metal/semiconductor contacts at endpoints[J]. Applied Mathematics and Mechanics(English Edition), 2020, 41(6): 845-858. doi: 10.1007/s10483-020-2617-9
    [15] IBRAHEM M A, VERRELLI E, LAI K T, et al. Dual wavelength (ultraviolet and green) photodetectors using solution processed zinc oxide nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36971-36979.
    [16] YANG H, YANG W, HU Y. Experimental study on the influence of annealing temperature on the piezoelectric property of ZnO bulk single crystal[J]. Materials Today Communications, 2024, 38: 108251. doi: 10.1016/j.mtcomm.2024.108251
    [17] XIE W, PENG W, WANG Y, et al. On the piezophototronic effect in heterojunction photodiode with type-Ⅱ energy band: theoretical model for anisotype heterojunction[J]. Physica Status Solidi (RRL): Rapid Research Letters, 2023, 17(9): 2300034. doi: 10.1002/pssr.202300034
    [18] GUO M, QIN G, LU C, et al. Photoexcitation dominated electrical behaviors in a nano GaN PN junction[J]. Mechanics of Advanced Materials and Structures, 2023: 1-7. DOI: 10.1080/15376494.2023.2242832.
    [19] AGUILAR O, DE CASTRO S, GODOY M P F, et al. Optoelectronic characterization of Zn1-xCdxO thin films as an alternative to photonic crystals in organic solar cells[J]. Optical Materials Express, 2019, 9(9): 3638. doi: 10.1364/OME.9.003638
    [20] LI S, CHENG R, MA N, et al. Analysis of piezoelectric semiconductor fibers under gradient temperature changes[J]. Applied Mathematics and Mechanics(English Edition), 2024, 45(2): 311-320. doi: 10.1007/s10483-024-3085-8
    [21] YANG W, LIU J, HU Y. Mechanical tuning methodology on the barrier configuration near a piezoelectric PN interface and the regulation mechanism on Ⅰ—Ⅴ characteristics of the junction[J]. Nano Energy, 2021, 81: 105581. doi: 10.1016/j.nanoen.2020.105581
    [22] 黄昆, 韩汝琦. 半导体物理基础[M]. 北京: 科学出版社, 1979.

    HUANG Kun, HAN Ruqi. The Physical Basis of Semiconductors[M]. Beijing: Science Press, 1979. (in Chinese)
    [23] YANG Y, YANG W, WANG Y, et al. A mechanically induced artificial potential barrier and its tuning mechanism on performance of piezoelectric PN junctions[J]. Nano Energy, 2022, 92: 106741. doi: 10.1016/j.nanoen.2021.106741
    [24] WANG Z L, YANG R, ZHOU J, et al. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics[J]. Materials Science and Engineering: R: Reports, 2010, 70(36): 320-329.
    [25] ZHANG C, WANG X, CHEN W, et al. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force[J]. Smart Materials and Structures, 2017, 26(2): 025030. doi: 10.1088/1361-665X/aa542e
    [26] 沈亮. 新型结构异质结太阳能电池的研究[D]. 长春: 吉林大学, 2009.

    SHEN Liang. Study on heterojunction solar cells fabricated by novel structure[D]. Changchun: Jilin University, 2009. (in Chinese)
    [27] 申衍伟. ZnO异质结光电器件的制备及其性能研究[D]. 北京: 北京科技大学, 2016.

    SHEN Yanwei. Studies on preparation and performance characteristics of ZnO based heterojunction optoelectronic devices[D]. Beijing: University of Science and Technology Beijing, 2016. (in Chinese)
    [28] 高平奇, 王子磊, 林豪, 等. 太阳电池物理与器件[M]. 广州: 中山大学出版社, 2022.

    GAO Pingqi, WANG Zilei, LIN Hao, et al. The Physics and Devices of Solar Cells[M]. Guangzhou: Sun Yat-sen University Press, 2022. (in Chinese)
    [29] HAVERKORT J E M, GARNETT E C, BAKKERS E P A M. Fundamentals of the nanowire solar cell: optimization of the open circuit voltage[J]. Applied Physics Reviews, 2018, 5(3): 031106. doi: 10.1063/1.5028049
    [30] CUI Y, WANG J, PLISSARD S R, et al. Efficiency enhancement of InP nanowire solar cells by surface cleaning[J]. Nano Letters, 2013, 13(9): 4113-4117. doi: 10.1021/nl4016182
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  53
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-07-08
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回